
DE1-SoC Computer System with Nios® V

For Quartus® Prime 24.1

1 Introduction

This document describes a computer system that can be implemented on the DE1-SoC development and education
board, which is described in the Teaching and Projects Boards section of the FPGAcademy.org website.
This system, called the DE1-SoC Computer with Nios V, is intended for use in experiments on computer organization
and embedded systems.

To support such experiments, the computer system contains embedded processors, memory, basic I/O devices like
switches and lights, audio and video devices, and various other I/O peripherals. The FPGA programming file that
implements this system, as well as its design source files, can be obtained from its GitHub repository.

2 DE1-SoC Computer with Nios V Contents

A block diagram of the DE1-SoC Computer with Nios V is shown in Figure 1. As indicated in the figure, the compo-
nents in this system are implemented utilizing both the FPGA and the Hard Processor System (HPS) inside Altera’s
Cyclone® V SoC chip. The FPGA implements two Nios V® processors and several peripheral ports: memory, timer
modules, audio-in/out, video-in/out, PS/2, analog-to-digital, infrared receive/transmit, and parallel ports connected
to switches and lights. The HPS comprises an ARM* Cortex* A9 dual-core processor and a set of peripheral de-
vices. Some of these HPS peripheral devices can be accessed by Nios V. Instructions for using the HPS with the
ARM processor can be found in the document entitled DE1-SoC Computer System with ARM* Cortex* A9, which
is available on the FPGAcademy.org website.

2.1 Getting Started with the DE1-SoC Computer with Nios V

To make use of the DE1-SoC Computer with Nios V you need to be able to assemble software programs for the
Nios V processor and then execute these programs in the computer system. There are two main approaches for
getting started: using a simulation of the computer system, or using an FPGA board that implements the computer
system in hardware.

2.1.1 Using the CPUlator Simulator

The CPUlator is a powerful and easy-to-use functional simulator that runs inside a web browser. It simulates
the behavior of a whole computer system, including the processor, memory, and many types of I/O devices. The
CPUlator simulator supports a variety of different computer systems, including the DE1-SoC Computer with Nios V.

The CPUlator user interface displays all of the information that a programmer needs to develop and debug software
code running on the DE1-SoC Computer with Nios V. It shows (and allows you to edit) the values in the processor
general-purpose and control registers, as well as the contents of memories in the computer system and the values of

FPGAcademy.org
Aug 2024

1

https://www.fpgacademy.org/boards.html
https://www.fpgacademy.org/tutorials.html
https://www.fpgacademy.org

For Quartus® Prime 24.1

Expansion
ports

Cyclone V
FPGA

PS/2
ports

Timers

SW9-0
LEDR9-0

Parallel
ports

Parallel
ports

HEX5-HEX0
7-Segment

KEY3-0

SDRAM
port

SDRAM
chip IrDA

On-chip
memory

Video-in
port

TV
Decoder

Host computer

USB
Blaster VGA

DAC
Audio

CODEC

Video-out
port

Audio
port

Peripherals
DE1-SoC

DDR3
port

DDR3
chips

Port

JTAG
ports

Parallel
ports

ARM

MPCore

Cortex A9

Timers
Cyclone V
HPS

Ports

. . .

Board

Nios V

FPGA Bridges

LEDG

Port

KEY ADC

Port

(2)

G-Sensor

Port

Nios V
Timer Timers

FPGA

Figure 1. Block diagram of the DE1-SoC Computer with Nios V.

memory-mapped I/O device registers. The CPUlator allows software code, written either in assembly language or
the C language, to be entered into the simulator, assembled to produce machine code, loaded into memory, and then
executed. The user can set breakpoints in the machine code, single-step instructions, and perform any of the usual
operations that are supported in typical debugging environments. A screen capture of the CPUlator user interface is
shown in Figure 2. It displays the processor registers on the left-hand side (by default) of the screen, the program
code in the middle, and graphical representations of I/O devices on the right-hand side.

2.1.2 Using the Monitor Program with an FPGA Hardware Board

The DE1-SoC Computer with Nios V can be implemented using a DE1-SoC hardware board. An easy way to begin
working with this computer system is to make use of the utility called the Monitor Program. It provides an easy
way to assemble/compile Nios V programs written in either assembly language or the C language. The Monitor
Program, which can be downloaded from the Software Tools section of the FPGAcademy.org website, is an
application program that runs on the host computer connected to the DE1-SoC board. The Monitor Program can be
used to control the execution of code on Nios V, list (and edit) the contents of processor registers, display/edit the
contents of memory on the DE1-SoC board, and similar operations. The Monitor Program includes the DE1-SoC
Computer as a pre-designed system that can be downloaded onto the DE1-SoC board, as well as several sample
programs in assembly language and C that show how to use the DE1-SoC Computer with Nios V peripheral devices.

2 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org/tools.html
https://www.fpgacademy.org

For Quartus® Prime 24.1

Figure 2. The CPUlator.

Some images that show how the DE1-SoC Computer with Nios V is integrated with the Monitor Program are given
in Section ??. An overview of the Monitor Program is available in the document Monitor Program Tutorial for the
Nios V Processor, which is provided as part of the Computer Organization System Design tutorials on
FPGAcademy.org.

2.1.3 Using GDB with an FPGA Hardware Board

The Monitor Program controls the FPGA hardware and the Nios V processor by using the industry-standard GNU
Project Debugger (GDB). Instead of using the Monitor Program, you can debug code with the GDB tool directly.

FPGAcademy.org
Aug 2024

3

https://www.fpgacademy.org/tutorials.html
https://www.fpgacademy.org

For Quartus® Prime 24.1

2.2 Nios® V Processor

The Altera Nios® V processor is an implementation of the 32-bit RISC-V processor architecture. Three versions
of Nios V exist, each with different features and capabilities. Documentation for these three versions, designated
as compact (Nios V/c), microcontroller (Nios V/m), and general purpose (Nios V/g), can be found by searching
on the Internet for keywords such as Nios V versions. The DE1-SoC Computer with Nios V includes two
instances of the Nios V/m version. An overview of the Nios V processor can be found in the document Introduction
to Nios V, which is available as part of the Computer Organization and System Design tutorials in the
FPGAcademy.org website.

2.2.1 Nios V Machine Timer and Software Interrupt Registers

Nios V includes a 64-bit internal timer that is available to application programmers. The timer is reset to 0 when the
DE1-SoC board is powered on, and then monotonically increases at the system clock rate, which is 100 MHz. The
timer is accessible via two memory-mapped registers, called mtime (machine time) and mtimecmp (machine time
compare). The mtime register provides the current timer value, and the mtimecmp register can be used to cause a
timer interrupt. A Nios V timer interrupt will be pending whenever the value of mtime reaches or exceeds the value
of mtimecmp. Interrupts are discussed in Section 3.

Since they are 64-bits wide, both mtime and mtimecmp comprise two 32-bit memory-mapped registers, one for the
low word and the other for the high word. Nios V also contains a memory-mapped register called msip (machine
software interrupt pending), which can be used by an application programmer to cause a software interrupt.

The mtime, mtimecmp and msip memory-mapped registers are are illustrated in Figure 3, which gives the assigned
address of each register in the DE1-SoC Computer with Nios V.

Address Name

31

msip

mtime (high)

mtimecmp (high)

mtimecmp (low)

0

0xFF202100

0xFF202104

0xFF202108

0xFF20210C

0xFF202110 unused

mtime (low)

131 30 2. . .

31 0130 2. . .

0130 2. . .

Figure 3. Nios V memory-mapped registers.

2.3 Memory Components

The DE1-SoC Computer with Nios V has SDRAM and DDR3 memory ports, as well as two memory modules
implemented using the on-chip memory inside the FPGA. These memories are described below.

4 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org/tutorials.html
https://www.fpgacademy.org

For Quartus® Prime 24.1

2.3.1 SDRAM

An SDRAM Controller in the FPGA provides an interface to the 64 MB synchronous dynamic RAM (SDRAM)
on the DE1-SoC board, which is organized as 32M x 16 bits. It is accessible by the Nios V processor using word
(32-bit), halfword (16-bit), or byte operations, and is mapped to the address space 0x00000000 to 0x03FFFFFF.

2.3.2 DDR3 Memory

A 1 GB DDR3 memory is connected to the HPS part of the Cyclone® V SoC chip. The memory is organized as
256M x 32-bits, and is accessible using word accesses (32 bits), halfwords, and bytes. The Nios V processor can
access the DDR3 memory using the addresses space 0x40000000 to 0x7FFFFFFF.

2.3.3 On-Chip Memory

A 256 KB memory is implemented inside the FPGA, organized as 64K x 32 bits. The Nios V processor can access
this memory using addresses in the range 0x08000000 to 0x0803FFFF. This memory is used as a pixel buffer for
the video-out and video-in ports.

2.3.4 On-Chip Memory Character Buffer

An 8 KB memory is implemented inside the FPGA for use as a character buffer for the video-out port, which is
described in Section 4.2. The character buffer memory is organized as 8K x 8 bits, and spans the Nios V address
range 0x09000000 to 0x09001FFF.

2.4 Parallel Ports

There are several parallel ports implemented in the FPGA that support input, output, and bidirectional transfers of
data between the Nios V processor and I/O peripherals. As illustrated in Figure 4, each parallel port is assigned
a Base address and contains up to four 32-bit registers. Ports that have output capability include a writable Data
register, and ports with input capability have a readable Data register. Bidirectional parallel ports also include a
Direction register that has the same bit-width as the Data register. Each bit in the Data register can be configured
as an input by setting the corresponding bit in the Direction register to 0, or as an output by setting this bit position
to 1. The Direction register is assigned the address Base + 4.

Address 02 14 331 30 . . .

Base

Base + 8

Base + C

Base + 4

Input or output data bits

Direction bits

Edge bits

Mask bits

Data register

Direction register

Interruptmask register

Edgecapture register

Direction bits

Figure 4. Parallel port registers in the DE1-SoC Computer with Nios V.

FPGAcademy.org
Aug 2024

5

https://www.fpgacademy.org

For Quartus® Prime 24.1

Some of the parallel ports have registers at addresses Base + 8 and Base + C, as indicated in Figure 4. These registers
are discussed in Section 3.

2.4.1 Red LED Parallel Port

The red lights LEDR9−0 on the DE1-SoC board are driven by an output parallel port, as illustrated in Figure 5. The
port contains a 10-bit Data register, which has the address 0xFF200000. This register can be written or read by the
processor using word accesses, and the upper bits not used in the registers are ignored.

0xFF200000

LEDR0LEDR9

Address

031 910 . . .Unused Data register

Figure 5. Output parallel port for LEDR.

2.4.2 7-Segment Displays Parallel Port

There are two parallel ports connected to the 7-segment displays on the DE1-SoC board, each of which comprises
a 32-bit write-only Data register. As indicated in Figure 6, the register at address 0xFF200020 drives digits HEX3
to HEX0, and the register at address 0xFF200030 drives digits HEX5 and HEX4. Data can be written into these
two registers, and read back, by using word operations. This data directly controls the segments of each display,
according to the bit locations given in Figure 6. The locations of segments 6 to 0 in each seven-segment display on
the DE1-SoC board is illustrated on the right side of the figure.

0xFF200020

...

HEX06-0

...

HEX16-0

...

HEX36-0

Address

07 6815 142431 30

0xFF200030

...

HEX26-0

1623 22

...

HEX46-0

...

HEX56-0

07 6815 142431 30 1623 22

Data register

Data register

0

1

2

3

4

5 6

Segments

Unused

Figure 6. Bit locations for the 7-segment displays parallel ports.

6 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

2.4.3 Slider Switch Parallel Port

The SW9−0 slider switches on the DE1-SoC board are connected to an input parallel port. As illustrated in Figure 7,
this port comprises a 10-bit read-only Data register, which is mapped to address 0xFF200040.

0xFF200040

SW0SW9

Address

Data register031 910 . . .Unused

Figure 7. Data register in the slider switch parallel port.

2.4.4 Pushbutton Key Parallel Port

The parallel port connected to the KEY3−0 pushbutton switches on the DE1-SoC board comprises three 4-bit reg-
isters, as shown in Figure 8. These registers have the base address 0xFF200050 and can be accessed using word
operations. The read-only Data register provides the values of the switches KEY3−0. The other two registers shown
in Figure 8, at addresses 0xFF200058 and 0xFF20005C, are discussed in Section 3.

Address 02 14 331 30 . . .

0xFF200050

0xFF200058

0xFF20005C

Unused

KEY3-0

Edge bits

Mask bits

Unused

Unused

Unused

Data register

Interruptmask register

Edgecapture register

Unused

Figure 8. Registers used in the pushbutton parallel port.

2.4.5 Expansion Parallel Port

The DE1-SoC Computer with Nios V includes two bidirectional parallel ports that are connected to the JP1 and JP2
40-pin headers on the DE1-SoC board. These parallel ports include the four 32-bit registers that were described
previously for Figure 4. The base address of the port for JP1 is 0xFF200060, and for JP2 is 0xFF200070. Figure 9
gives a diagram of the 40-pin connectors on the DE1-SoC board, and shows how the respective parallel port Data
register bits, D31−0, are assigned to the pins on the connector. The figure shows that bit D0 of the parallel port is
assigned to the pin at the top right corner of the connector, bit D1 is assigned below this, and so on. Note that some
of the pins on the 40-pin header are not usable as input/output connections, and are therefore not used by the parallel
ports. Also, only 32 of the 36 data pins that appear on each connector can be used.

FPGAcademy.org
Aug 2024

7

https://www.fpgacademy.org

For Quartus® Prime 24.1

D0
D1

D2 D3
D4 D5
D6 D7
Unused

D10 D11
D12 D13

D14
D15

D16 D17
D18 D19

D22 D23
D24 D25
D26 D27
D28 D29
D30 D31

Unused

JP1 JP2

Pin 1 Pin 1

Pin 40 Pin 40

D8 D9

D20 D21

D0
D1

D2 D3
D4 D5
D6 D7
Unused

D10 D11
D12 D13

D14
D15

D16 D17
D18 D19

D22 D23
D24 D25
D26 D27
D28 D29
D30 D31

Unused

D8 D9

D20 D21

Figure 9. Assignment of parallel port bits to pins on JP1 and JP2.

2.4.6 Using the Parallel Ports with Assembly Language Code and C Code

The DE1-SoC Computer with Nios V provides a convenient platform for experimenting with Nios V assembly
language code, or C code. A simple example of such code is provided in the Appendix in Listings 1 and 2. Each
of these listing includes a file that specifies the memory-mapped addresses of all peripheral devices in the DE1-SoC
Computer with Nios V. These include files, called address_map_niosv.s and address_map_niosv.h, are provided in
Listings 11 and 12. These include files are also used in other code samples described in this document.

The code in Listing 1 and 2 displays the values of the SW switches on the LED lights, and also shows a rotating
pattern on the LEDs. This pattern is shifted in a loop, using a software delay to make the shifting slow enough to
observe. The pattern can be changed to the values of the SW switches by pressing a pushbutton KEY. When a KEY
is pressed, the program waits in a loop until it is released and then continues to display the pattern.

The source code files shown in Listings 1 and 2 are distributed as part of the Monitor Program. The files can be
found under the heading sample programs, and are identified by the name Getting Started.

2.5 JTAG* Port

The JTAG* port implements a communication link between the DE1-SoC board and its host computer. This link
can be used by the Altera Quartus® Prime software to transfer FPGA programming files into the DE1-SoC board,
and by the Monitor Program, discussed in Section ??. The JTAG port also includes a UART, which can be used to
transfer character data between the host computer and programs that are executing on the Nios V processor. The
programming interface of the JTAG UART consists of two 32-bit registers, as shown in Figure 10. The register

8 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

mapped to address 0xFF201000 is called the Data register and the register mapped to address 0xFF201004 is
called the Control register.

Address 0731 16. . .

0xFF201000

0xFF201004

DATARAVAIL

14 8.

WSPACE Unused WI RI WE RE

1

RVALID

AC

10 911

Unused

15

Data register

Control register

Figure 10. JTAG UART registers.

When character data from the host computer is received by the JTAG UART it is stored in a 64-character FIFO.
The number of characters currently stored in this FIFO is indicated in the field RAVAIL, which are bits 31−16 of the
Data register. If the receive FIFO overflows, then additional data is lost. When data is present in the receive FIFO,
then the value of RAVAIL will be greater than 0 and the value of bit 15, RVALID, will be 1. Reading the character
at the head of the FIFO, which is provided in bits 7−0, decrements the value of RAVAIL by one and returns this
decremented value as part of the read operation. If no data is present in the receive FIFO, then RVALID will be set
to 0 and the data in bits 7−0 is undefined.

The JTAG UART also includes a 64-character FIFO that stores data waiting to be transmitted to the host computer.
Character data is loaded into this FIFO by performing a write to bits 7−0 of the Data register in Figure 10. Note
that writing into this register has no effect on received data. The amount of space, WSPACE, currently available in
the transmit FIFO is provided in bits 31−16 of the Control register. If the transmit FIFO is full, then any characters
written to the Data register will be lost.

Bit 10 in the Control register, called AC, has the value 1 if the JTAG UART has been accessed by the host computer.
This bit can be used to check if a working connection to the host computer has been established. The AC bit can be
cleared to 0 by writing a 1 into it.

The Control register bits RE, WE, RI, and WI are described in Section 3.

2.5.1 Using the JTAG* UART with Assembly Language Code and C Code

Listings 3 and 4 give simple examples of assembly language and C code, respectively, that use the JTAG UART.
Both versions of the code perform the same function, which is to first send an ASCII string to the JTAG UART, and
then enter an endless loop. In the loop, the code reads character data that has been received by the JTAG UART, and
echoes this data back to the UART for transmission. In the CPUlator simulator, there is a JTAG window that allows
text to be typed and echoed. If the program is executed by using the Monitor Program, then any keyboard character
that is typed into the Terminal Window of the Monitor Program will be echoed back, causing the character to appear
in the Terminal Window.

The source code files shown in Listings 3 and 4 are made available as part of the Monitor Program. The files can be
found under the heading sample programs, and are identified by the name JTAG UART.

FPGAcademy.org
Aug 2024

9

https://www.fpgacademy.org

For Quartus® Prime 24.1

2.6 Interval Timers

The DE1-SoC Computer with Nios V includes a timer module implemented in the FPGA that can be used by the
Nios V processor. This timer can be loaded with a preset value, and then counts down to zero using a 100-MHz clock.
The programming interface for the timer includes six 16-bit registers, as illustrated in Figure 11. The 16-bit register
at address 0xFF202000 provides status information about the timer, and the register at address 0xFF202004 allows
control settings to be made. The bit fields in these registers are described below:

• TO provides a timeout signal which is set to 1 by the timer when it has reached a count value of zero. The TO
bit can be reset by writing a 0 into it.

• RUN is set to 1 by the timer whenever it is currently counting. Write operations to the status halfword do not
affect the value of the RUN bit.

• ITO is used for generating interrupts, which are discussed in section 3.

Address 01531 . . .

0xFF202000

0xFF202004

. . .

Unused RUN TO

1

START CONT ITOSTOP

16 217

Unused

Counter start value (low) 0xFF202008

Counter start value (high)0xFF20200C

Counter snapshot (low)0xFF202010

Counter snapshot (high)0xFF202014

3

Not present
(interval timer has
16-bit registers)

Status register

Control register

Figure 11. Interval timer registers.

• CONT affects the continuous operation of the timer. When the timer reaches a count value of zero it auto-
matically reloads the specified starting count value. If CONT is set to 1, then the timer will continue counting
down automatically. But if CONT = 0, then the timer will stop after it has reached a count value of 0.

• (START/STOP) is used to commence/suspend the operation of the timer by writing a 1 into the respective bit.

The two 16-bit registers at addresses 0xFF202008 and 0xFF20200C allow the period of the timer to be changed
by setting the starting count value. The default setting gives a timer period of 125 msec. To achieve this period, the
starting value of the count is 100 MHz × 125 msec = 12.5×106. It is possible to capture a snapshot of the counter
value at any time by performing a write to address 0xFF202010. This write operation causes the current 32-bit
counter value to be stored into the two 16-bit timer registers at addresses 0xFF202010 and 0xFF202014. These
registers can then be read to obtain the count value.

A second interval timer, which has an identical interface to the one described above, is also available in the FPGA,
starting at the base address 0xFF202020.

10 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

Each Nios V processor has exclusive access to two interval timers, at the addresses given above.

2.7 G-Sensor

The DE1-SoC Computer with Nios V includes a 3D accelerometer (G-sensor) that is connected to the HPS. The
Nios V processor can access this device via an I2C serial interface at the base address 0xFFC04000. More details
can be found in the tutorial Using the Accelerometer on DE-series Boards.

3 Exceptions and Interrupts

The reset address of the Nios V processor in the DE1-SoC Computer with Nios V is set to 0x00000000. The address
used for the trap handler for all other exceptions and interrupts can be set by the programmer (by writing to the mtvec
control register). Table 1 gives the assignment of IRQ numbers to each of the I/O peripherals in the system. The rest
of this section describes the interrupt behavior associated with the Nios V machine timer, the FPGA interval timer,
parallel ports, and serial ports.

Device Name IRQ #
Nios V software interrupt 3
Nios V machine timer 7
Interval timer 16
Second Interval timer 17
Pushbutton KEY port 18
Audio port 21
PS/2 port 22
PS/2 port dual 23
JTAG port 24
IrDA port 25
Serial port 26
JP1 Expansion port 27
JP2 Expansion port 28

Table 1. Hardware IRQ interrupt assignment for the DE1-SoC Computer with Nios V.

FPGAcademy.org
Aug 2024

11

https://www.fpgacademy.org

For Quartus® Prime 24.1

3.1 Interrupts from the Nios V Software Interrupts and Machine Timer

The IRQ numbers for the Nios V software interrupts register and machine timer are not system dependent and are part
of the processor specification. The procedure that can be used to set up and handle these interrupts is described in the
document Introduction to Nios V, which is available as part of the Computer Organization and System
Design tutorials in the FPGAcademy.org website.

3.2 Interrupts from the FPGA Interval Timer

Figure 11, in Section 2.6, shows six registers that are associated with the interval timer. As we said in Section 2.6,
the TO bit in the Status register is set to 1 when the timer reaches a count value of 0. It is possible to generate an
interrupt when this occurs, by using the ITO bit in the Control register. Setting the ITO bit to 1 causes an interrupt
request to be sent to the processor whenever TO becomes 1. After an interrupt occurs, it can be cleared by writing
any value into the Status register.

3.3 Interrupts from Parallel Ports

Parallel ports were illustrated in Figure 4, which is reproduced as Figure 12. As the figure shows, parallel ports that
support interrupts include two related registers at the addresses Base + 8 and Base + C. The Interruptmask register,
which has the address Base + 8, specifies whether or not an interrupt signal should be sent to the processor when the
data present at an input port changes value. Setting a bit location in this register to 1 allows interrupts to be generated,
while setting the bit to 0 prevents interrupts. Finally, the parallel port may contain an Edgecapture register at address
Base + C. Each bit in this register has the value 1 if the corresponding bit location in the parallel port has changed
its value from 0 to 1. A bit in the Edgecapture register can be cleared to 0 by writing a 1 into the corresponding bit
position, which clears any associated interrupt.

Address 02 14 331 30 . . .

Base

Base + 8

Base + C

Base + 4

Input or output data bits

Direction bits

Data register

Direction register

Interruptmask register

Edgecapture register Edge bits

Mask bits

Direction bits

Figure 12. Registers used for interrupts from the parallel ports.

3.3.1 Interrupts from the Pushbutton KEY Port

Figure 8, reproduced as Figure 13, shows the registers associated with the pushbutton KEY port. The Interruptmask
register allows interrupts to be generated when a key is pressed. Interrupts can be enabled individually for each key
by setting its Interruptmask bit to 1. When a key is pressed, the corresponding bit in the Edgecapture register is set
to 1 by the parallel port. This bit remains 1 until cleared to 0 by software. An interrupt service routine can read the
Edgecapture register to determine which key/s has/have been pressed. An Edgecapture register bit can be cleared

12 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org/tutorials.html
https://www.fpgacademy.org

For Quartus® Prime 24.1

by writing a logic value 1 into the bit position. Clearing the bit resets the corresponding interrupt signal being sent
to the processor.

Address 02 14 331 30 . . .

0xFF200050

0xFF200058

0xFF20005C

Unused

KEY3-0

Edge bits

Mask bits

Unused

Unused

Unused

Data register

Interruptmask register

Edgecapture register

Unused

Figure 13. Registers used for interrupts from the pushbutton KEY port.

3.4 Interrupts from the JTAG* UART

Figure 10, reproduced as Figure 14, shows the Data and Control registers of the JTAG UART. As we said in Sec-
tion 2.5, RAVAIL in the Data register gives the number of characters that are stored in the receive FIFO, and WSPACE
gives the amount of unused space that is available in the transmit FIFO. The RE and WE bits in Figure 14 are used to
enable processor interrupts associated with the receive and transmit FIFOs. When enabled, interrupts are generated
when RAVAIL for the receive FIFO, or WSPACE for the transmit FIFO, exceeds 7. Pending interrupts are indicated
in the Control register’s RI and WI bits, and can be cleared by writing or reading data to/from the JTAG UART.

Address 0731 16. . .

0xFF201000

0xFF201004

DATARAVAIL

14 8.

WSPACE Unused WI RI WE RE

1

RVALID

AC

10 911

Unused

15

Data register

Control register

Figure 14. Interrupt bits in the JTAG UART registers.

3.5 Using Interrupts with Assembly Language Code

An example of assembly language code for the DE1-SoC Computer with Nios V that uses interrupts is shown in
Listing 5. When this code is executed on the DE1-SoC board it first sets up interrupts from three devices: the Nios V
machine timer, an FPGA interval timer, and the pushbutton KEY port. The code to initialize these devices is given
in Lines 141 to 175 in Part (d) of Listing 5. Line 24 in Listing 5(a) initializes the stack pointer to the bottom of the
64 MB SDRAM on the DE1-SoC, and Lines 25 to 27 initialize the three interrupting devices. Interrupts are enabled
in Lines 30 to 37. First, the address of the trap handler routine is written into the mtvec register, and then software
interrupts, machine timer, interval timer, and KEY port interrupts are enabled by setting bits b3, b7, b16 and b18,
respectively, of the machine interrupt enable (mie) register. Finally, interrupts are enabled in Nios V by setting bit
b3 of the mstatus register.

FPGAcademy.org
Aug 2024

13

https://www.fpgacademy.org

For Quartus® Prime 24.1

Next, in Lines 40 to 42 the program makes a software interrupt occur, to illustrate how this is done. Finally, the main
program loops in between Lines 51 and 57 while responding to interrupts from the timers and the KEY pushbutton
port.

The trap handler is given in Lines 59 to 89. After first saving registers that will be modified, it reads the value of the
mcause register. Based on this value, the trap handler calls the appropriate interrupt service routine.

The interrupt service routine for the software interrupt, in Lines 91 to 97, turns on most of the red lights in the LEDR
port, to provide a visual indication of its execution.

The interrupt service routine for the Nios V machine timer, in Lines 99 to 114, adjusts the mtimecmp value for the
next interrupt, and increments a counter variable. The main program displays this counter as a binary number on the
red lights LEDR, which will increment for every timer interrupt.

The interrupt service routine for the FPGA interval timer, in Lines 116 to 129, increments a one-digit decimal
counter. The main program displays this counter on the 7-segment display HEX0. The counter either increments or
decrements, in the range 0 to 9. When a KEY is pressed, its corresponding interrupt service routine, in Lines 131 to
139, reverses the direction of counting on HEX0.

The remaining lines of code, in Listing 5(e), provide a subroutine for converting decimal digits to 7-segment display
codes, and define the global variables that are used in the program.

3.6 Using Interrupts with C Code

An example of C code for the DE1-SoC Computer with Nios V that uses interrupts is shown in Listing 6. This code
performs the same operations as the code in Listing 5. Lines 1 to 22 in the code declare some symbols, function
prototypes, and global variables that are needed in the program. The function prototype for the handler subroutine,
which is the trap handler in this program, is assigned the attribute interrupt ("machine"). This attribute
instructs the C compiler to generate the appropriate assembly-language code for an interrupt handler: it saves and
restores all registers that could be modified while the interrupt is being handled, and it returns to the interrupted
program by using the mret instruction.

The main program declares pointers for accessing I/O devices in Lines 45 to 47. These pointers are given the
volatile keyword, which tells the compiler that the value of the variables may change at any time, even if not
modified in the code where they are declared (in this case the values may be modified by the interrupt service
routines). Lines 49 to 51 in the code call subroutines that enable interrupts in the Nios V machine timer, the FPGA
interval timer, and the KEY port.

Interrupts are enabled in the C code in lines 53 to 66 by inserting assembly-language code using the GNU C-
compiler’s __asm__ inline assembly feature. The steps performed by these lines of code are the same as those in
Lines 29 to 37 of Listing 5.

Inline assembly-language code is also used in the handler routine, in Line 84 in Part (b) of Listing 6, to read the
Nios V mcause register. The handler then calls the appropriate interrupt service routine. As mentioned above, the
handler saves and restores all temporary registers, and returns to the main program using the mret instruction,
because the handler is declared with the interrupt ("machine") attribute.

14 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

4 Media Components

This section describes the audio in/out, video-out, video-in, PS/2, IrDA*, and ADC ports, as well as floating point
support.

4.1 Audio In/Out Port

The DE1-SoC Computer with Nios V includes an audio port that is connected to the audio CODEC (COder/DECoder)
chip on the DE1-SoC board. The default setting for the sample rate provided by the audio CODEC is 8K samples/sec.
The audio port provides audio-input capability via the microphone jack on the DE1-SoC board, as well as audio
output functionality via the line-out jack. The audio port includes four FIFOs that are used to hold incoming and
outgoing data. Incoming data is stored in the left- and right-channel Read FIFOs, and outgoing data is held in the
left- and right-channel Write FIFOs. All FIFOs have a maximum depth of 128 32-bit words.

The audio port’s programming interface consists of four 32-bit registers, as illustrated in Figure 15. The Control
register, which has the address 0xFF203040, is readable to provide status information and writable to make control
settings. Bit RE of this register provides an interrupt enable capability for incoming data. Setting this bit to 1 allows
the audio core to generate a Nios V interrupt when either of the Read FIFOs are filled 75% or more. The bit RI will
then be set to 1 to indicate that the interrupt is pending. The interrupt can be cleared by removing data from the
Read FIFOs until both are less than 75% full. Bit WE gives an interrupt enable capability for outgoing data. Setting
this bit to 1 allows the audio core to generate an interrupt when either of the Write FIFOs are less that 25% full. The
bit WI will be set to 1 to indicate that the interrupt is pending, and it can be cleared by filling the Write FIFOs until
both are more than 25% full. The bits CR and CW in Figure 15 can be set to 1 to clear the Read and Write FIFOs,
respectively. The clear function remains active until the corresponding bit is set back to 0.

31 . . . 24 23 . . . 16 15 . . . 10 9 8 7 . . . 4 3 2 1 0

Unused WI RI CW CR WE RE

WSLC WSRC RALC RARC

Left data

Right data

Address

0xFF203040

0xFF203044

0xFF203048

0xFF20304C

Control

Fifospace

Leftdata

Rightdata

Figure 15. Audio port registers.

The read-only Fifospace register in Figure 15 contains four 8-bit fields. The fields RARC and RALC give the number
of words currently stored in the right and left audio-input FIFOs, respectively. The fields WSRC and WSLC give the
number of words currently available (that is, unused) for storing data in the right and left audio-out FIFOs. When all
FIFOs in the audio port are cleared, the values provided in the Fifospace register are RARC = RALC = 0 and WSRC
= WSLC = 128.

The Leftdata and Rightdata registers are readable for audio in, and writable for audio out. When data is read from
these registers, it is provided from the head of the Read FIFOs, and when data is written into these registers it is
loaded into the Write FIFOs.

FPGAcademy.org
Aug 2024

15

https://www.fpgacademy.org

For Quartus® Prime 24.1

A fragment of C code that uses the audio port is shown in Listing 7. The code checks to see when the depth of either
the left or right Read FIFO has exceeded 75% full, and then moves the data from these FIFOs into a memory buffer.
This code is part of a program that is distributed as part of the Monitor Program. The source code can be found
under the heading sample programs, and is identified by the name Audio.

4.2 Video-out Port

The DE1-SoC Computer with Nios V includes a video-out port connected to the on-board VGA controller that can
be connected to a standard VGA monitor. The video-out port support a screen resolution of 640 × 480. The image
that is displayed by the video-out port is derived from two sources: a pixel buffer, and a character buffer.

4.2.1 Pixel Buffer

The pixel buffer for the video-out port holds the data (color) for each pixel that will be displayed. As illustrated in
Figure 16, the pixel buffer provides an image resolution of 320 × 240 pixels, with the coordinate 0,0 being at the
top-left corner of the image. Since the video-out port supports the screen resolution of 640 × 480, each of the pixel
values in the pixel buffer is replicated in both the x and y dimensions when it is being displayed on the screen.

0 1 2 3 . . . 319

0

1

2

...

239

. . .

. . .

...
...

Figure 16. Pixel buffer coordinates.

Figure 17a shows that each pixel color is represented as a 16-bit halfword, with five bits for the blue and red
components, and six bits for green. As depicted in part b of Figure 17, pixels are addressed in the pixel buffer by
using the combination of a base address and an x,y offset. In the DE1-SoC Computer the default address of the pixel
buffer is 0x08000000, which corresponds to the starting address of the FPGA on-chip memory. Using this scheme,
the pixel at location 0,0 has the address 0x08000000, the pixel 1,0 has the address base + (00000000 000000001 0)2

= 0x08000002, the pixel 0,1 has the address base + (00000001 000000000 0)2 = 0x08000400, and the pixel at
location 319,239 has the address base + (11101111 100111111 0)2 = 0x0803BE7E.

You can create an image by writing color values into the pixel addresses as described above. A dedicated pixel buffer
controller continuously reads this pixel data from sequential addresses in the corresponding memory for display on

16 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

15 11 10 5 4 0
red green blue

(a) Pixel values

31 . . . 18 17 . . . 10 9 . . . 1 0
0xy00001000000000

(b) Pixel address

Figure 17. Pixel values and addresses.

the screen. You can modify the pixel data at any time, simply by writing to the pixel addresses. Thus, an image can
be changed even when it is in the process of being displayed. However, it is also possible to avoid making changes
to the pixel buffer while it is being displayed, by using the concept of double-buffering. In this scheme, two pixel
buffers are involved, called the front and back buffers, described below.

4.2.2 RGB Resampling

The DE1-SoC Computer contains an RGB Resampler for converting video streams between RGB color formats.
Reading from the 32-bit Status register at address 0xFF203010 provides information about alpha/no alpha, col-
or/grayscale, and mode for the incoming and outgoing formats. The incoming format for the DE1-SoC Com-
puter video stream is 0x14, which corresponds to no alpha, color, 16-bit RGB (5-bit Red, 6-bit Green, 5-bit Blue).
More information can be found in the documentation called Video IP Cores for Altera DE-Series Computer Systems,
available as part of the Hardware Components tutorials on the FPGAcademy.org website.

4.2.3 Double Buffering

As mentioned above, a pixel buffer controller reads data out of the pixel buffer so that it can be displayed on the
screen. This pixel buffer controller includes a programming interface in the form of a set of registers, as illustrated in
Table 2. The register at address 0xFF203020 is called the Buffer register, and the register at address 0xFF203024
is the Backbuffer register. Each of these registers stores the starting address of a pixel buffer. The Buffer register
holds the address of the pixel buffer that is displayed on the screen. As mentioned above, in the default configuration
of the DE1-SoC Computer this Buffer register is set to the address 0x08000000, which points to the start of the
FPGA on-chip memory. The default value of the Backbuffer register is also 0x08000000, which means that there
is only one pixel buffer. But software can modify the address stored in the Backbuffer register, thereby creating a
second pixel buffer. The pixel buffer can be located in the SDRAM memory in the DE1-SoC Computer, which has
the base address 0x00000000. Note that the pixel buffer cannot be located in the DDR3 memory in the DE1-SoC
Computer, because the pixel buffer controller is not connected to the DDR3 memory. An image can be drawn into
the second buffer by writing to its pixel addresses. This image is not displayed on the screen until a pixel buffer
swap is performed, as explained below.

FPGAcademy.org
Aug 2024

17

https://www.fpgacademy.org/tutorials.html
https://www.fpgacademy.org

For Quartus® Prime 24.1

A pixel buffer swap is caused by writing the value 1 to the Buffer register. This write operation does not directly
modify the content of the Buffer register, but instead causes the contents of the Buffer and Backbuffer registers
to be swapped. The swap operation does not happen right away; it occurs at the end of a screen-drawing cycle,
after the last pixel in the bottom-right corner has been displayed. This time instance is referred to as the vertical
synchronization time, and occurs every 1/60 seconds. Software can poll the value of the S bit in the Status register,
at address 0xFF20302C, to see when the vertical synchronization has happened. Writing the value 1 into the Buffer
register causes S to be set to 1. Then, when the swap of the Buffer and Backbuffer registers has been completed S is
reset back to 0.

Address Register R/W Bit Description
Name 31. . . 24 23. . . 16 15. . . 12 11. . . 8 7. . . 6 5. . . 3 2 1 0

0xFF203020 Buffer R Buffer’s start address
0xFF203024 BackBuffer R/W Back buffer’s start address
0xFF203028 Resolution R Y X

0xFF20302C
Status R m n (1) BS SB (1) EN A S
Control W (1) EN (1)

Notes:

(1) Reserved. Read values are undefined. Write zero.

Table 2. Pixel Buffer Controller

In a typical application the pixel buffer controller is used as follows. While the image contained in the pixel buffer
that is pointed to by the Buffer register is being displayed, a new image is drawn into the pixel buffer pointed to by
the Backbuffer register. When this new image is ready to be displayed, a pixel buffer swap is performed. Then, the
pixel buffer that is now pointed to by the Backbuffer register, which was already displayed, is cleared and the next
new image is drawn. In this way, the next image to be displayed is always drawn in the “back” pixel buffer, and the
two pixel buffer pointers are swapped when the new image is ready to be displayed. Each time a swap is performed
software has to synchronize with the video-out port by waiting until the S bit in the Status register becomes 0.

As shown in Table 2 the Status register contains additional information other than the S bit. The fields n and m give
the number of address bits used for the X and Y pixel coordinates, respectively. The BS field specifies the number of
data bits per symbol minus one. The SB field specifies the number of symbols per beat minus one. The A field allows
the selection of two different ways of forming pixel addresses. If configured with A = 0, then the pixel controller
expects addresses to contain X and Y fields, as we have used in this section. But if A = 1, then the controller expects
addresses to be consecutive values starting from 0 and ending at the total number of pixels−1. The E N field is used
to enable or disable the DMA controller. If this bit is set to 0, the DMA controller will be turned off.

In Table 2 the default values of the status register fields in the DE1-SoC Computer are used when forming pixel
addresses. The defaults are n = 9, m = 8, and A = 0. If the pixel buffer controller is changed to provide different
values of these fields, then the way in which pixel addresses are formed has to be modified accordingly. The
programming interface also includes a Resolution register, shown in Table 2, that contains the X and Y resolution of
the pixel buffer(s).

18 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

4.2.4 Character Buffer

The character buffer for the video-out port is stored in on-chip memory in the FPGA on the DE1-SoC board. As
illustrated in Figure 18a, the buffer provides a resolution of 80 × 60 characters, where each character occupies an
8 × 8 block of pixels on the screen. Characters are stored in each of the locations shown in Figure 18a using their
ASCII codes; when these character codes are displayed on the monitor, the character buffer automatically generates
the corresponding pattern of pixels for each character using a built-in font. Part b of Figure 18 shows that characters
are addressed in the memory by using the combination of a base address, which has the value 0x09000000, and an
x,y offset. Using this scheme, the character at location 0,0 has the address 0x09000000, the character 1,0 has the
address base + (000000 0000001)2 = 0x09000001, the character 0,1 has the address base + (000001 0000000)2 =
0x09000080, and the character at location 79,59 has the address base + (111011 1001111)2 = 0x09001DCF.

790

. . .

1 2 3

. .
 .

. .
 .

. . .

. . .

0

1

2

. .
 .

59

31 . . . 0. . .712

1100100100000000000

613

xy

. . .

(a) Character buffer coordinates

(b) Character buffer addresses

Figure 18. Character buffer coordinates and addresses.

4.2.5 Using the Video-out Port with C code

A fragment of C code that uses the pixel and character buffers is shown in Listing 8. The first for loop in the figure
draws a rectangle in the pixel buffer using the color pixel_color. The rectangle is drawn using the coordinates x1, y1

and x2, y2. The second while loop in the figure writes a null-terminated character string pointed to by the variable
text_ptr into the character buffer at the coordinates x, y. The code in Listing 8 is included in the sample program
called Video that is distributed with the Monitor Program.

4.3 Video-in Port

The DE1-SoC Computer with Nios V includes a video-in port for use with the composite video-in connector on the
DE1-SoC board. The video analog-to-digital converter (ADC) connected to this port is configured to support an

FPGAcademy.org
Aug 2024

19

https://www.fpgacademy.org

For Quartus® Prime 24.1

NTSC video source. The video-in port provides frames of video at a resolution of 320 x 240 pixels. These video
frames can be displayed on a monitor by using the video-out port described in Section 4.2. The video-in port writes
each frame of the video-in data into the pixel buffer described in Section 4.2.1. The video-in port can be configured
to provide two types of images: either the “raw” image provided by the video ADC, or a version of this image in
which only “edges” that are detected in the image are drawn.

The video-in port has a programming interface that consists of two registers, as illustrated in Figure 19. The Control
register at the address 0xFF20306C is used to enable or disable the video input. If the EN bit in this register is set
to 0, then the video-in core does not store any data into the pixel buffer. Setting EN to 1 and then changing EN to 0
can be used to capture a still picture from the video-in port.

The register at address 0xFF203070 is used to enable or disable edge detection. Setting the E bit in this register
to 1 causes the input video to passed through hardware circuits that detect edges in the images. The image stored
in the pixel buffer will then consist of dark areas that are punctuated by lighter lines along the edges that have been
detected. Setting E = 0 causes a normal image to be stored into the pixel buffer.

012

0xFF20306C

Address

0xFF203070

Control

Edge-detection

EN

0

E

Unused

Unused

Figure 19. The video-in port programming interface.

4.3.1 DMA Controller for Video

The data provided by the Video-In core is stored into memory using a DMA Controller for Video. When operating
in Stream to Memory mode, the DMA stores the incoming frames to memory. Table 3 describes the registers used
in the DMA Controller.

Address Register R/W Bit Description
Name 31. . . 24 23. . . 16 15. . . 12 11. . . 8 7. . . 6 5. . . 3 2 1 0

0xFF203060 Buffer R Buffer’s start address
0xFF203064 BackBuffer R/W Back buffer’s start address
0xFF203068 Resolution R Y X

0xFF20306C
Status R m n (1) BS SB (1) EN A S
Control W (1) EN (1)

Notes:

(1) Reserved. Read values are undefined. Write zero.

Table 3. Video DMA Controller

20 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

The incoming video is stored to memory, starting at the address specified in the Buffer register. The BackBuffer
register is used to store an alternate memory location. To change where the video is stored, the new location should
first be written into the BackBuffer. Then the value in the BackBuffer and Buffer registers can be switched by
performing a write to the Buffer register.

Bit 2 of the Status/Control register, EN, is used to enable or disable the Video DMA controller. In the DE1-SoC
Computer, the DMA controller is disabled by default. To enable the DMA controller, write a 1 into this location.
The Video DMA Controller will then begin storing the video into the location specified in the Buffer register.

The default value stored in the Buffer register is 0x08000000. This address is also used as the source for the Video-
Out port, as described in Section 4.2, allowing the Video In stream to be displayed on the VGA. If the Video-Out is
intended to display a different signal, than the address stored in the Video DMA Controller’s Buffer register should
be changed.

4.4 Audio/Video Configuration Module

The audio/video configuration module controls settings that affect the operation of both the audio port and the
video-out port. The audio/video configuration module automatically configures and initializes both of these ports
whenever the DE1-SoC Computer with Nios V is reset. For typical use of the DE1-SoC Computer with Nios V it is
not necessary to modify any of these default settings.

4.5 PS/2 Port

The DE1-SoC Computer with Nios V includes two PS/2 ports that can be connected to a standard PS/2 keyboard or
mouse. The port includes a 256-byte FIFO that stores data received from a PS/2 device. The programming interface
for the PS/2 port consists of two registers, as illustrated in Figure 20. The PS2_Data register is both readable and
writable. When bit 15, RVALID, is 1, reading from this register provides the data at the head of the FIFO in the
Data field, and the number of entries in the FIFO (including this read) in the RAVAIL field. When RVALID is 1,
reading from the PS2_Data register decrements this field by 1. Writing to the PS2_Data register can be used to send
a command in the Data field to the PS/2 device.

The PS2_Control register can be used to enable interrupts from the PS/2 port by setting the RE field to the value 1.
When this field is set, then the PS/2 port generates an interrupt when RAVAIL > 0. While the interrupt is pending
the field RI will be set to 1, and it can be cleared by emptying the PS/2 port FIFO. The CE field in the PS2_Control
register is used to indicate that an error occurred when sending a command to a PS/2 device.

Address 01531 . . .

0xFF200100

0xFF200104

. . .

Unused

RE

1

DataRAVAIL

16

PS2_Data

RI

. . .89

CE

710

PS2_Control

RVALID

Figure 20. PS/2 port registers.

FPGAcademy.org
Aug 2024

21

https://www.fpgacademy.org

For Quartus® Prime 24.1

A fragment of C code that uses the PS/2 port is given in Listing 9. This code reads the content of the Data register,
and saves data when it is available. If the code is used continually in a loop, then it stores the last three bytes of
data received from the PS/2 port in the variables byte1, byte2, and byte3. This code is included as part of a sample
program called PS2 that is distributed with the Monitor Program.

4.5.1 PS/2 Port Dual

A second PS/2 port is included that allows both a keyboard and mouse to be used at the same time. To use the dual
port a Y-splitter cable must be used and the keyboard and mouse must be connected to the PS/2 connector on the
DE1-SoC board through this cable. The PS/2 port dual has the same registers as the PS/2 port shown in Listing 9,
except that the base address of its PS2_Data register is 0xFF200108 and the base address of its PS2_Control register
is 0xFF20010C.

4.6 IrDA* Infrared Serial Port

The IrDA port in the DE1-SoC Computer with Nios V implements a UART that is connected to the infrared trans-
mit/receive device on the DE1-SoC board. This UART is configured for 8-bit data, one stop bit, and no parity,
and operates at a baud rate of 115,200. The serial port’s programming interface consists of two 32-bit registers, as
illustrated in Figure 21. The register at address 0xFF201020 is referred to as the Data register, and the register at
address 0xFF201024 is called the Control register.

Address 09 731 16. . .

0xFF201024

DATARAVAIL

14 10. . . 8 . . .

Unused PE

WSPACE WI RI WE RE

1

0xFF201020 Data register

Control register

RVALID

15

Unused

. . . 24 23

Unused

Unused

Figure 21. IrDA serial port UART registers.

When character data is received from the IrDA chip it is stored in a 256-character FIFO in the UART. As illustrated
in Figure 21, the number of characters RAVAIL currently stored in this FIFO is provided in bits 23−16 of the Data
register. If the receive FIFO overflows, then additional data is lost. When the data that is present in the receive FIFO
is available for reading, then the value of bit 15, RVALID, will be 1. Reading the character at the head of the FIFO,
which is provided in bits 7−0, decrements the value of RAVAIL by one and returns this decremented value as part
of the read operation. If no data is available to be read from the receive FIFO, then RVALID will be set to 0 and the
data in bits 7−0 is undefined.

The UART also includes a 256-character FIFO that stores data waiting to be sent to the IrDA device. Character data
is loaded into this register by performing a write to bits 7−0 of the Data register. Writing into this register has no
effect on received data. The amount of space WSPACE currently available in the transmit FIFO is provided in bits
23−16 of the Control register, as indicated in Figure 21. If the transmit FIFO is full, then any additional characters
written to the Data register will be lost.

The RE and WE bits in the Control register are used to enable Nios V processor interrupts associated with the receive
and transmit FIFOs. When enabled, interrupts are generated when RAVAIL for the receive FIFO, or WSPACE for

22 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

the transmit FIFO, exceeds 31. Pending interrupts are indicated in the Control register’s RI and WI bits, and can be
cleared by writing or reading data to/from the UART.

4.7 Analog-to-Digital Conversion Port

The Analog-to-Digital Conversion (ADC) Port provides access to the eight-channel, 12-bit analog-to-digital con-
verter on the DE1-SoC board. As illustrated in Figure 22, the ADC port comprises eight 12-bit registers starting at
the base address 0xFF204000. The first two registers have dual purposes, acting as both data and control registers.
By default, the ADC port updates the A-to-D conversion results for all ports only when instructed to do so. Writing
to the control register at address 0xFF204000 causes this update to occur. Reading from the register at address
0xFF204000 provides the conversion data for channel 0. Reading from the other seven registers provides the con-
version data for the corresponding channels. It is also possible to have the ADC port continually request A-to-D
conversion data for all channels. This is done by writing the value 1 to the control register at address 0xFF204004.
The R bit of each channel register in Figure 22 is used in Auto-update mode. R is set to 1 when its corresponding
channel is refreshed and set to 0 when the channel is read.

Address 031 . . .

0xFF204000

0xFF20401C

0xFF204004

Unused Channel 0 / Update

Channel 7

Channel 1 / Auto-update

... not shown

0xFF204008 Channel 2

11

Unused

Unused

Unused

16 15 12

 Unused

 Unused

 Unused

 Unused

14 . . .

R

R

R

R

Figure 22. ADC port registers.

Figure 23 shows the connector on the DE1-SoC board that is used with the ADC port. Analog signals in the range
of 0 V to the VCC 5 power-supply voltage can be connected to the pins for channels 0 to 7.

Gnd Ch7
Ch6 Ch5
Ch4 Ch3
Ch2 Ch1
Ch0 V

JP15

cc5

Figure 23. ADC connector.

FPGAcademy.org
Aug 2024

23

https://www.fpgacademy.org

For Quartus® Prime 24.1

4.8 Floating-point Hardware

The Nios V/g processor in the includes hardware support for floating-point addition, subtraction, multiplication, and
division. To use this support in a C program, variables must be declared with the type float. A simple example of
such code is given in Listing 10. When this code is compiled, it may be necessary to pass special argument to the C
compiler to instruct it to use the floating-point hardware support.

5 Modifying the DE1-SoC Computer with Nios V

It is possible to modify the DE1-SoC Computer with Nios V by using Altera’s Quartus® Prime software and Platform
Designer tool. Instructions for using this software are provided as part of the Computer Organization and
System Design tutorials on the FPGAcademy.org website. To modify the system it is first necessary to make an
editable copy of the DE1-SoC Computer with Nios V. The files for this system are installed as part of the Monitor
Program installation. Locate these files, copy them to a working directory, and then use the Quartus Prime and
Platform Designer software to make any desired changes.

Table 4 lists the names of the Platform Designer IP cores that are used in this system. When the DE1-SoC Computer
with Nios V design files are opened in the Quartus Prime software, these cores can be examined using the Platform
Designer System Integration tool. Each core has a number of settings that are selectable in the Platform Designer
System Integration tool, and includes a datasheet that provides detailed documentation.

The steps needed to modify the system are:

1. Make of copy of the design source files for the DE1-SoC Computer with Nios V from the its GitHub repository.

2. Open the top-level project file (*.qpf) in the Quartus Prime software

3. Open the Platform Designer System Integration tool in the Quartus Prime software, and modify the system as
desired

4. Generate the modified system by using the Platform Designer System Integration tool

5. It may be necessary to modify the Verilog code in the top-level module of the project, if any I/O peripherals
have been added or removed from the system

6. Compile the project in the Quartus Prime software

7. Download the modified system into the DE1-SoC board

Note: to compile and use a new version of the DE1-SoC Computer with Nios V it may be necessary to request a
license from Altera that allows you to create circuit that includes the Nios V processor.

24 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org/tutorials.html
https://www.fpgacademy.org

For Quartus® Prime 24.1

I/O Peripheral Qsys Core

SDRAM SDRAM Controller
On-chip memory character buffer Character Buffer for VGA Display
Red LED parallel port Parallel Port
7-segment displays parallel port Parallel Port
Expansion parallel ports Parallel Port
Slider switch parallel port Parallel Port
Pushbutton parallel port Parallel Port
PS/2 port PS2 Controller
JTAG port JTAG UART
Serial port RS232 UART
IrDA port IrDA UART
Interval timer Interval timer
System ID System ID Peripheral
Audio/video configuration port Audio and Video Config
Audio port Audio
Video port Pixel Buffer DMA Controller
Video In port DMA Controller

Table 4. Platform Designer cores used in the DE1-SoC Computer with Nios V.

FPGAcademy.org
Aug 2024

25

https://www.fpgacademy.org

For Quartus® Prime 24.1

6 Making the System the Default Configuration

The DE1-SoC Computer with Nios V can be loaded into the nonvolatile FPGA configuration memory on the DE1-
SoC board, so that it becomes the default system whenever the board is powered on. Instructions for configuring the
DE1-SoC board in this manner can be found in the tutorial Introduction to the Quartus Prime Software, which is
available as part of the Digital Logic Hardware Design tutorials in the FPGAcademy.org website.

7 Memory Layout

Table 5 summarizes the memory map used in the DE1-SoC Computer.

Base Address End Address I/O Peripheral

0x00000000 0x03FFFFFF SDRAM
0x08000000 0x0803FFFF FPGA On-chip Memory
0x09000000 0x09001FFF FPGA On-chip Memory Character Buffer
0x40000000 0x7FFFFFFF DDR3 Memory
0xFF200000 0xFF20000F Red LEDs
0xFF200020 0xFF20002F 7-segment HEX3−HEX0 Displays
0xFF200030 0xFF20003F 7-segment HEX5−HEX4 Displays
0xFF200040 0xFF20004F Slider Switches
0xFF200050 0xFF20005F Pushbutton KEYs
0xFF200060 0xFF20006F JP1 Expansion
0xFF200070 0xFF20007F JP2 Expansion
0xFF200100 0xFF200107 PS/2
0xFF200108 0xFF20010F PS/2 Dual
0xFF201000 0xFF201007 JTAG UART
0xFF201020 0xFF201027 Infrared (IrDA)
0xFF202000 0xFF20201F Interval Timer
0xFF202020 0xFF20202F Second Interval Timer
0xFF202100 0xFF202114 Nios V Machine Timer and Software Interrupts Registers
0xFF203000 0xFF20301F Audio/video Configuration
0xFF203020 0xFF20302F Pixel Buffer Control
0xFF203030 0xFF203037 Character Buffer Control
0xFF203040 0xFF20304F Audio
0xFF203060 0xFF203070 Video-in
0xFF204000 0xFF20401F ADC
0xFFC04000 0xFFC040FC HPS I2C0

Table 5. Memory layout used in the DE1-SoC Computer.

26 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org/tutorials.html
https://www.fpgacademy.org

For Quartus® Prime 24.1

8 Appendix

This section contains all of the source code files mentioned in the document.

8.1 Parallel Ports

.include "address_map_niosv.s"

/**
* This program demonstrates use of parallel ports

*
* It performs the following:

* 1. displays a rotating pattern on the LEDs

* 2. if any KEY is pressed, the SW switches are used as the rotating pattern

**/

.global _start
_start:

la s0, SW_BASE # SW slider switch base address
la s1, LED_BASE # LED base address
la s2, KEY_BASE # pushbutton KEY base address
la t1, LED_bits
lw t0, (t1) # load pattern for LED lights

DO_DISPLAY:
lw t1, (s0) # load slider switches

lw t2, (s2) # load pushbuttons
beqz t2, NO_BUTTON
mv t0, t1 # use SW switch values as LED pattern

WAIT:
lw t3, (s2) # load pushbuttons
bnez t3, WAIT # wait for button release

NO_BUTTON:
sw t0, (s1) # write to the LEDs
srli t1, t0, 10 # perform some operations to rotate
slli t0, t0, 1 # the 10-bit pattern
or t0, t0, t1 # completes the "rotate" operation

li t2, 1500000 # delay counter
DELAY:

addi t2, t2, -1
bnez t2, DELAY

j DO_DISPLAY

LED_bits:
.word 0x0000030F # 10-bit pattern

Listing 1. An example of Nios V assembly language code that uses parallel ports.

FPGAcademy.org
Aug 2024

27

https://www.fpgacademy.org

For Quartus® Prime 24.1

#include "address_map_niosv.h"
/* This program demonstrates use of parallel ports in the Computer System

*
* It performs the following:

* 1. displays a rotating pattern on the LEDs

* 2. if a KEY is pressed, uses the SW switches as the pattern

*/
int main(void) {

/* Declare volatile pointers to I/O registers (volatile means that IO load

* and store instructions will be used to access these pointer locations,

* instead of regular memory loads and stores)

*/
volatile int * LED_ptr = (int *)LED_BASE; // LED address
volatile int * SW_switch_ptr = (int *)SW_BASE; // SW slider switch address
volatile int * KEY_ptr = (int *)KEY_BASE; // pushbutton KEY address

int LED_bits = 0x0F0F0F0F; // pattern for LED lights
int SW_value, KEY_value;
volatile int

delay_count; // volatile so the C compiler doesn’t remove the loop

while (1) {
SW_value = *(SW_switch_ptr); // read the SW slider (DIP) switch values

KEY_value = *(KEY_ptr); // read the pushbutton KEY values
if (KEY_value != 0) // check if any KEY was pressed
{

/* set pattern using SW values */
LED_bits = SW_value | (SW_value << 8) | (SW_value << 16) |

(SW_value << 24);
while (*KEY_ptr)

; // wait for pushbutton KEY release
}

*(LED_ptr) = LED_bits; // light up the LEDs

/* rotate the pattern shown on the LEDs */
if (LED_bits & 0x80000000)

LED_bits = (LED_bits << 1) | 1;
else

LED_bits = LED_bits << 1;

for (delay_count = 350000; delay_count != 0; --delay_count)
; // delay loop

}
}

Listing 2. An example of C code that uses parallel ports.

28 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

8.2 JTAG* UART

.include "address_map_niosVm.s"

/**
* This program demonstrates use of the JTAG UART port

*
* It performs the following:

* 1. sends a text string to the JTAG UART

* 2. reads character data from the JTAG UART

* 3. echos the character data back to the JTAG UART

***/

.global _start
_start:

la s0, JTAG_UART_BASE # JTAG UART base address

/* print a text string */
la s1, TEXT_STRING

LOOP:
lb a0, 0(s1)
beqz a0, GET_JTAG # string is null-terminated
jal PUT_JTAG
addi s1, s1, 1
j LOOP

/* read and echo characters */
GET_JTAG:

lw t0, 0(s0) # read the JTAG UART data register
li t1, 0x8000
and t1, t1, t0 # check if there is new data
beqz t1, GET_JTAG # if no data, wait
andi a0, t0, 0x00ff # the data is in the least significant byte

jal PUT_JTAG # echo character
j GET_JTAG

Listing 3. An example of assembly language code that uses the JTAG UART (Part a).

FPGAcademy.org
Aug 2024

29

https://www.fpgacademy.org

For Quartus® Prime 24.1

/**
* Subroutine to send a character to the JTAG UART

* a0 = character to send

* s0 = JTAG UART base address

***/
.global PUT_JTAG
PUT_JTAG:
/* save any modified registers */

lw t0, 4(s0) # read the JTAG UART control register
lui t1, 0xffff0 # t1 = 0xffff0000
and t0, t0, t1 # check for write space
beqz t0, END_PUT # if no space, ignore the character
sw a0, 0(s0) # send the character

END_PUT:
ret

/***/

TEXT_STRING:
.asciz "\nJTAG UART example code\n> "

Listing 3. An example of assembly language code that uses the JTAG UART (Part b).

30 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

#include "JTAG_UART.h"
#include "address_map_nios2.h"

/***
* Subroutine to send a character to the JTAG UART

**/
void put_jtag(volatile int * JTAG_UART_ptr, char c)
{

int control;
control = *(JTAG_UART_ptr + 1); // read the JTAG_UART control register
if (control & 0xFFFF0000) // if space, echo character, else ignore

*(JTAG_UART_ptr) = c;
}

/***
* Subroutine to read a character from the JTAG UART

* Returns \0 if no character, otherwise returns the character

**/
char get_jtag(volatile int * JTAG_UART_ptr)
{

int data;
data = *(JTAG_UART_ptr); // read the JTAG_UART data register
if (data & 0x00008000) // check RVALID to see if there is new data

return ((char)data & 0xFF);
else

return (’\0’);
}

Listing 4. An example of C code that uses the JTAG UART (Part a).

FPGAcademy.org
Aug 2024

31

https://www.fpgacademy.org

For Quartus® Prime 24.1

#include "JTAG_UART.h"
#include "address_map_nios2.h"

/***
* This program demonstrates use of the JTAG UART port

*
* It performs the following:

* 1. sends a text string to the JTAG UART

* 2. reads character data from the JTAG UART

* 3. echos the character data back to the JTAG UART

**/
int main(void)
{

/* Declare volatile pointers to I/O registers (volatile means that IO load
and store instructions will be used to access these pointer locations,
instead of regular memory loads and stores) */

volatile int * JTAG_UART_ptr = (int *)JTAG_UART_BASE; // JTAG UART address

char text_string[] = "\nJTAG UART example code\n> \0";
char *str, c;

/* print a text string */
for (str = text_string; *str != 0; ++str)

put_jtag(JTAG_UART_ptr, *str);

/* read and echo characters */
while (1)
{

c = get_jtag(JTAG_UART_ptr);
if (c != ’\0’)

put_jtag(JTAG_UART_ptr, c);
}

}

Listing 4. An example of C code that uses the JTAG UART (Part b).

32 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

8.3 Interrupts

1 .include "address_map_niosv.s"
2 /***
3 * This program demonstrates use of interrupts with assembly code. It first
4 * sets up interrupts from three devices: the Nios V machine timer, an FPGA
5 * interval timer, and the pushbutton KEY port. Next, the program makes a
6 * software interrupt occur. Finally, the program loops while responding to
7 * interrupts from the timers and the pushbutton KEY port.
8 *
9 * The interrupt service routine for the software interrupt turns on most

10 * of the red lights in the LEDR port.
11 *
12 * The interrupt service routine for the Nios V machine timer causes the
13 * main program to display a binary counter on the LEDR red lights.
14 *
15 * The interrupt service routine for the interval timer causes the main
16 * program to display a decimal counter on HEX0. The counter either
17 * increases or decreases, in the range 0 to 9. When a KEY is pressed, the
18 * direction of counting on HEX0 is reversed.
19 ***/
20 .equ clock_rate, 100000000
21 .equ quarter_clock, clock_rate / 4
22
23 .global _start
24 _start: li sp, SDRAM_END-3 # bottom of memory
25 jal set_mtimer # initialize machine timer
26 jal set_itimer # initialize interval timer
27 jal set_KEY # initialize the KEY port
28
29 # Set handler address, enable interrupts
30 csrci mstatus, 0x8 # disable Nios V interrupts
31 la t0, handler
32 csrw mtvec, t0 # set trap address
33 csrr t0, mie # what ints are enabled?
34 csrc mie, t0 # disable all ints that were enabled
35 li t0, 0x50088 # set the enable pattern
36 csrs mie, t0 # swi, itimer, KEY, mtimer
37 csrsi mstatus, 0x8 # enable Nios V interrupts
38
39 # Make a software interrupt happen
40 la t0, MTIME_BASE # base address
41 li t1, 1 # pattern to write to msip
42 sw t1, 16(t0) # write to msip (sw interrupt)
43

Listing 5. An example of assembly language code that uses interrupts (Part a).

FPGAcademy.org
Aug 2024

33

https://www.fpgacademy.org

For Quartus® Prime 24.1

44 la s0, counter # pointer to counter
45 la s1, LEDR_BASE # pointer to red lights
46 la s2, digit # pointer to digit
47 la s3, HEX3_HEX0_BASE # pointer to hex display
48 li t0, 0x3f # pattern for 7-segment digit 0
49 sw t0, (s3) # display 0 on HEX0
50
51 loop: wfi
52 lw t0, (s0) # load the counter value
53 sw t0, (s1) # write to the lights
54 lw a0, (s2) # load the digit value
55 jal seg7_code # get 7-segment code to display
56 sw a0, (s3) # write code to HEX0
57 j loop
58
59 # Trap handler
60 handler: addi sp, sp, -16 # save regs that will be modified
61 sw ra, 12(sp)
62 sw t2, 8(sp)
63 sw t1, 4(sp)
64 sw t0, (sp)
65
66 # check for cause of trap
67 csrr t0, mcause # read mcause register
68 li t1, 0x80000003 # IRQ 3
69 bne t0, t1, next # software interrupt?
70 jal SWI_ISR
71 j trap_end
72 next: li t1, 0x80000007 # IRQ 7
73 bne t0, t1, nnext # machine timer?
74 jal mtimer_ISR
75 j trap_end
76 nnext: li t1, 0x80000010 # IRQ 16
77 bne t0, t1, chk_KEY
78 jal itimer_ISR
79 j trap_end
80 chk_KEY: li t1, 0x80000012 # IRQ 18
81 stay: bne t0, t1, stay # unexpected!
82 jal KEY_ISR
83
84 trap_end: lw t0, (sp) # restore regs
85 lw t1, 4(sp)
86 lw t2, 8(sp)
87 lw ra, 12(sp)
88 addi sp, sp, 16
89 mret
90

Listing 5. An example of assembly language code that uses interrupts (Part b).

34 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

91 # Handle software interrupt
92 SWI_ISR: la t0, counter # pointer to counter
93 li t1, 0b1111111100
94 sw t1, (t0) # write to counter
95 la t0, MTIME_BASE # base address
96 sw zero, 16(t0) # clear software interrupt in msip
97 ret
98
99 # Handle machine timer interrupt

100 mtimer_ISR: la t0, MTIME_BASE
101 lw t1, 8(t0) # read mtimecmp low
102 li t2, quarter_clock
103 add t2, t2, t1 # add to mtimecmp
104 sw t2, 8(t0) # write to mtimecmp low
105 sltu t2, t2, t1 # check for carry-out
106 lw t1, 12(t0) # read mtimecmp high
107 add t1, t1, t2 # increment (t2 = carry-out)
108 sw t1, 12(t0) # write to mtimecmp high
109
110 la t0, counter # pointer to counter
111 lw t1, (t0) # read counter value
112 addi t1, t1, 1 # increment the counter
113 sw t1, (t0) # store counter to memory
114 ret
115
116 # Handle interval timer interrupt
117 itimer_ISR: la t0, TIMER_BASE
118 sh zero, (t0) # clear interrupt
119 la t0, digit
120 lw t1, (t0)
121
122 la t2, KEY_dir
123 lw t2, (t2)
124 add t1, t1, t2
125 li t2, 9
126 bgt t1, t2, itimer_end
127 bltz t1, itimer_end
128 sw t1, (t0) # store counter to memory
129 itimer_end: ret
130

Listing 5. An example of assembly language code that uses interrupts (Part c).

FPGAcademy.org
Aug 2024

35

https://www.fpgacademy.org

For Quartus® Prime 24.1

131 # Handle KEY port interrupt
132 KEY_ISR: la t0, KEY_BASE
133 lw t1, 0xc(t0) # read edgecapture register
134 sw t1, 0xc(t0) # write to edgecapture
135 la t0, KEY_dir
136 lw t1, (t0) # get current direction
137 neg t1, t1 # reverse
138 sw t1, (t0) # set current direction
139 ret
140
141 # Initialize Nios V machine timer
142 set_mtimer: la t0, MTIME_BASE # set address
143 # read the current time
144 tloop: lw t2, 4(t0) # read mtime high
145 lw t1, 0(t0) # read mtime low
146 lw t3, 4(t0) # read high again
147 bne t3, t2, tloop # check for overflow from low to high
148 # current time is t2:t1
149 li t3, quarter_clock
150 add t3, t3, t1 # add to current time
151 sw t3, 8(t0) # write to mtimecmp low
152 sltu t3, t3, t1 # check for carry-out
153 add t2, t2, t3 # increment (t3 = carry-out)
154 sw t2, 12(t0) # write to mtimecmp high
155 ret
156
157 # Initialize FPGA interval timer
158 set_itimer: la t0, TIMER_BASE # set address
159 sh zero, 4(t0) # stop the timer
160 sh zero, (t0) # clear the interrupt bit
161 li t1, clock_rate # timeout value
162 sh t1, 8(t0) # write to timer low half-word
163 srli t1, t1, 16
164 sh t1, 0xc(t0) # write to timer high half-word
165 li t1, 0b0111 # START = 1, CONT = 1, ITO = 1
166 sh t1, 4(t0) # reset lower word of mtime
167 ret
168
169 # Enable interrupts in the KEY port
170 set_KEY: la t0, KEY_BASE # set address
171 li t1, 0xf
172 sw t1, 0xc(t0) # clear all EdgeCapture bits
173 li t1, 0xf # bit pattern for all four KEYs
174 sw t1, 8(t0) # write to interrupt mask register
175 ret
176

Listing 5. An example of assembly language code that uses interrupts (Part d).

36 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

177 # Convert digit in a0 to seven-segment code. Return code in a0
178 seg7_code: la t0, bit_codes # starting address of the bit codes
179 add t0, t0, a0 # index into the bit codes
180 lb a0, (t0) # read the bit code for our digit
181 ret
182
183 counter: .word 0 # binary counter to be displayed
184 digit: .word 0 # decimal digit to be displayed
185 KEY_dir: .word 1 # digit counter direction
186 # 7-segment codes for digits 0, 1, ..., 9
187 bit_codes: .byte 0x3f, 0x06, 0x5b, 0x4f, 0x66
188 .byte 0x6d, 0x7d, 0x07, 0x7f, 0x67

Listing 5. An example of assembly language code that uses interrupts (Part e).

FPGAcademy.org
Aug 2024

37

https://www.fpgacademy.org

For Quartus® Prime 24.1

1 #include "address_map_niosv.h"
2
3 #define clock_rate 100000000
4 #define quarter_clock clock_rate / 4
5
6 static void handler(void) __attribute__ ((interrupt ("machine")));
7 void set_mtimer(void);
8 void set_itimer(void);
9 void set_KEY(void);

10 void SWI_ISR(void);
11 void mtimer_ISR(void);
12 void itimer_ISR(void);
13 void KEY_ISR(void);
14
15 /* Global variables are written by interrupt service routines; we declare
16 * as volatile to avoid the compiler caching their values in registers */
17 volatile int counter = 0; // binary counter to be displayed
18 volatile int digit = 0; // decimal digit to be displayed
19 volatile int KEY_dir = 1; // digit counter direction
20 // 7-segment codes for digits 0, 1, ..., 9
21 char bit_codes[] = {0x3f, 0x06, 0x5b, 0x4f, 0x66,
22 0x6d, 0x7d, 0x07, 0x7f, 0x67};
23
24 /***
25 * This program demonstrates use of interrupts with assembly code. It first
26 * sets up interrupts from three devices: the Nios V machine timer, an FPGA
27 * interval timer, and the pushbutton KEY port. Next, the program makes a
28 * software interrupt occur. Finally, the program loops while responding to
29 * interrupts from the timers and the pushbutton KEY port.
30 *
31 * The interrupt service routine for the software interrupt turns on most
32 * of the red lights in the LEDR port.
33 *
34 * The interrupt service routine for the Nios V machine timer causes the
35 * main program to display a binary counter on the LEDR red lights.
36 *
37 * The interrupt service routine for the interval timer causes the main
38 * program to display a decimal counter on HEX0. The counter either
39 * increases or decreases, in the range 0 to 9. When a KEY is pressed, the
40 * direction of counting on HEX0 is reversed.
41 ***/
42 int main(void) {
43 /* Declare volatile pointers to I/O registers (volatile means that the
44 * accesses will always go to the memory (I/O) address */
45 volatile int *mtime_ptr = (int *) MTIME_BASE;
46 volatile int *LEDR_ptr = (int *) LEDR_BASE;
47 volatile int *HEX3_HEX0_ptr = (int *) HEX3_HEX0_BASE;
48

Listing 6. An example of C code that uses interrupts (Part a).

38 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

49 set_mtimer();
50 set_itimer();
51 set_KEY();
52
53 int mstatus_value, mtvec_value, mie_value;
54 mstatus_value = 0b1000; // interrupt bit mask
55 // disable interrupts
56 __asm__ volatile ("csrc mstatus, %0" :: "r"(mstatus_value));
57 mtvec_value = (int) &handler; // set trap address
58 __asm__ volatile ("csrw mtvec, %0" :: "r"(mtvec_value));
59 // disable all interrupts that are currently enabled
60 __asm__ volatile ("csrr %0, mie" : "=r"(mie_value));
61 __asm__ volatile ("csrc mie, %0" :: "r"(mie_value));
62 mie_value = 0x50088; // KEY, itimer, mtimer, SW interrupts
63 // set interrupt enables
64 __asm__ volatile ("csrs mie, %0" :: "r"(mie_value));
65 // enable Nios V interrupts
66 __asm__ volatile ("csrs mstatus, %0" :: "r"(mstatus_value));
67
68 *(mtime_ptr + 4) = 1; // cause a software interrupt
69
70 *HEX3_HEX0_ptr = 0x3f; // show 0 on HEX0
71
72 while (1) {
73 *LEDR_ptr = counter;
74 *HEX3_HEX0_ptr = bit_codes[digit]; // display in decimal
75 }
76 }
77
78 /***
79 * Trap handler: determine what caused the interrupt and calls the
80 * appropriate subroutine.
81 **/
82 void handler (void){
83 int mcause_value;
84 __asm__ volatile ("csrr %0, mcause" : "=r"(mcause_value));
85 if (mcause_value == 0x80000003) // software interrupt
86 SWI_ISR();
87 else if (mcause_value == 0x80000007) // machine timer
88 mtimer_ISR();
89 else if (mcause_value == 0x80000010) // interval timer
90 itimer_ISR();
91 else if (mcause_value == 0x80000012) // KEY port
92 KEY_ISR();
93 // else, ignore the trap
94 }
95

Listing 6. An example of C code that uses interrupts (Part b).

FPGAcademy.org
Aug 2024

39

https://www.fpgacademy.org

For Quartus® Prime 24.1

96 // Software interrupt service routine
97 void SWI_ISR(void){
98 volatile int *mtime_ptr = (int *) MTIME_BASE;
99 counter = 0b1111111100; // set global variable

100 *(mtime_ptr + 4) = 0; // clear interrupt
101 }
102
103 // Nios V machine timer interrupt service routine
104 typedef long long int64;
105
106 void mtimer_ISR(void){
107 volatile unsigned int *mtime_ptr = (unsigned int *) MTIME_BASE;
108 int64 mtimecmp64;
109
110 mtimecmp64 = *(mtime_ptr + 3); // read high word of 64-bit

register
111 mtimecmp64 = (mtimecmp64 << 32) | *(mtime_ptr + 2); // read

low word
112 mtimecmp64 = mtimecmp64 + (int64) quarter_clock; // adjust

timeout
113 *(mtime_ptr + 2) = (unsigned int) mtimecmp64; // store

low word
114 *(mtime_ptr + 3) = (unsigned int) (mtimecmp64 >> 32); // store

high word
115 counter = counter + 1;
116 }
117
118 // FPGA interval timer interrupt service routine
119 void itimer_ISR(void){
120 int new_digit;
121 volatile int * timer_ptr = (int *) TIMER_BASE;
122 *timer_ptr = 0; // clear the interrupt
123 new_digit = digit + KEY_dir; // inc/dec the digit
124 if (new_digit < 10 && new_digit > -1)
125 digit = new_digit; // decimal (0 to 9)
126 }
127
128 // KEY port interrupt service routine
129 void KEY_ISR(void){
130 int pressed;
131 volatile int *KEY_ptr = (int *) KEY_BASE;
132 pressed = *(KEY_ptr + 3); // read EdgeCapture
133 *(KEY_ptr + 3) = pressed; // clear EdgeCapture register
134 KEY_dir = -KEY_dir; // reverse counting direction
135 }
136

Listing 6. An example of C code that uses interrupts (Part c).

40 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

137 // Configure the Nios V machine timer
138 void set_mtimer(void){
139 volatile int *mtime_ptr = (int *) MTIME_BASE;
140 unsigned int mtime_h, mtime_l, carry, mtimecmp_l;
141 do {
142 mtime_h = *(mtime_ptr + 1); // read mtime high word
143 mtime_l = *(mtime_ptr); // read mtime low word
144 } while (*(mtime_ptr + 1) != mtime_h);
145 mtimecmp_l = mtime_l + quarter_clock; // add to current time
146 carry = mtimecmp_l < mtime_l ? 1 : 0; // check for carry-out
147 *(mtime_ptr + 2) = mtimecmp_l; // set mtimecmp low word
148 *(mtime_ptr + 3) = mtime_h + carry; // set mtimecmp high word
149 }
150
151 // Configure the FPGA interval timer
152 void set_itimer(void){
153 volatile int *timer_ptr = (int *) TIMER_BASE;
154 // set the interval timer period
155 int load_val = clock_rate;
156 *(timer_ptr + 0x2) = (load_val & 0xFFFF);
157 *(timer_ptr + 0x3) = (load_val >> 16) & 0xFFFF;
158
159 // start interval timer, enable its interrupts
160 *(timer_ptr + 1) = 0x7; // STOP = 1, START = 1, CONT = 1, ITO = 1
161 }
162
163 // Configure the KEY port
164 void set_KEY(void){
165 volatile int *KEY_ptr = (int *) KEY_BASE;
166 *(KEY_ptr + 3) = 0xF; // clear EdgeCapture register
167 *(KEY_ptr + 2) = 0xF; // enable interrupts for all KEYs
168 }

Listing 6. An example of C code that uses interrupts (Part d).

FPGAcademy.org
Aug 2024

41

https://www.fpgacademy.org

For Quartus® Prime 24.1

8.4 Audio

#include "address_map_niosv.h"

/* globals */
#define BUF_SIZE 80000 // about 10 seconds of buffer (@ 8K samples/sec)
#define BUF_THRESHOLD 96 // 75% of 128 word buffer

/* function prototypes */
void check_KEYs(int *, int *, int *);

/***
* This program performs the following:

* 1. records audio for 10 seconds when KEY[0] is pressed. LEDR[0] is lit

* while recording.

* 2. plays the recorded audio when KEY[1] is pressed. LEDR[1] is lit while

* playing.

**/
int main(void) {

/* Declare volatile pointers to I/O registers (volatile means that IO load
and store instructions will be used to access these pointer locations,
instead of regular memory loads and stores) */

volatile int * red_LED_ptr = (int *)LED_BASE;
volatile int * audio_ptr = (int *)AUDIO_BASE;

/* used for audio record/playback */
int fifospace;
int record = 0, play = 0, buffer_index = 0;
int left_buffer[BUF_SIZE];
int right_buffer[BUF_SIZE];

/* read and echo audio data */
record = 0;
play = 0;

while (1) {
check_KEYs(&record, &play, &buffer_index);
if (record) {

*(red_LED_ptr) = 0x1; // turn on LEDR[0]
fifospace =

*(audio_ptr + 1); // read the audio port fifospace register
if ((fifospace & 0x000000FF) > BUF_THRESHOLD) // check RARC
{

// store data until the the audio-in FIFO is empty or the buffer
// is full
while ((fifospace & 0x000000FF) && (buffer_index < BUF_SIZE)) {

left_buffer[buffer_index] = *(audio_ptr + 2);
right_buffer[buffer_index] = *(audio_ptr + 3);
++buffer_index;

if (buffer_index == BUF_SIZE) {

42 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

// done recording
record = 0;

*(red_LED_ptr) = 0x0; // turn off LEDR
}
fifospace = *(audio_ptr +

1); // read the audio port fifospace register
}

}
} else if (play) {

*(red_LED_ptr) = 0x2; // turn on LEDR_1
fifospace =

*(audio_ptr + 1); // read the audio port fifospace register
if ((fifospace & 0x00FF0000) > BUF_THRESHOLD) // check WSRC
{

// output data until the buffer is empty or the audio-out FIFO
// is full
while ((fifospace & 0x00FF0000) && (buffer_index < BUF_SIZE)) {

*(audio_ptr + 2) = left_buffer[buffer_index];

*(audio_ptr + 3) = right_buffer[buffer_index];
++buffer_index;

if (buffer_index == BUF_SIZE) {
// done playback
play = 0;

*(red_LED_ptr) = 0x0; // turn off LEDR
}
fifospace = *(audio_ptr +

1); // read the audio port fifospace register
}

}
}

}
}

/**
* Subroutine to read KEYs

**/
void check_KEYs(int * KEY0, int * KEY1, int * counter) {

volatile int * KEY_ptr = (int *)KEY_BASE;
volatile int * audio_ptr = (int *)AUDIO_BASE;
int KEY_value;

KEY_value = *(KEY_ptr); // read the pushbutton KEY values
while (*KEY_ptr)

; // wait for pushbutton KEY release

if (KEY_value == 0x1) // check KEY0
{

// reset counter to start recording

*counter = 0;
// clear audio-in FIFO

FPGAcademy.org
Aug 2024

43

https://www.fpgacademy.org

For Quartus® Prime 24.1

*(audio_ptr) = 0x4;

*(audio_ptr) = 0x0;

*KEY0 = 1;
} else if (KEY_value == 0x2) // check KEY1
{

// reset counter to start playback

*counter = 0;
// clear audio-out FIFO

*(audio_ptr) = 0x8;

*(audio_ptr) = 0x0;

*KEY1 = 1;
}

}

Listing 7. An example of code that uses the audio port.

44 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

8.5 Video Out

#include "address_map_niosv.h"

/* function prototypes */
void video_text(int, int, char *);
void video_box(int, int, int, int, short);
int resample_rgb(int, int);
int get_data_bits(int);

#define STANDARD_X 320
#define STANDARD_Y 240
#define INTEL_BLUE 0x0071C5
/* global variables */
int screen_x;
int screen_y;
int res_offset;
int col_offset;

/***
* This program demonstrates use of the video in the computer system.

* Draws a blue box on the video display, and places a text string inside the

* box

**/
int main(void) {

volatile int * video_resolution = (int *)(PIXEL_BUF_CTRL_BASE + 0x8);
screen_x = *video_resolution & 0xFFFF;
screen_y = (*video_resolution >> 16) & 0xFFFF;

// The following two lines are supported in hardware, but not in CPUlator
volatile int * rgb_status = (int *)(RGB_RESAMPLER_BASE);
int db = get_data_bits(*rgb_status & 0x3F);
// int db = 16; // replace above two lines with this one for CPUlator

/* check if resolution is smaller than the standard 320 x 240 */
res_offset = (screen_x == 160) ? 1 : 0;

/* check if number of data bits is less than the standard 16-bits */
col_offset = (db == 8) ? 1 : 0;

/* create a message to be displayed on the video and LCD displays */
char text_top_row[40] = "Intel FPGA\0";
char text_bottom_row[40] = "Computer Systems\0";

/* update color */
short background_color = resample_rgb(db, INTEL_BLUE);

video_text(35, 29, text_top_row);
video_text(32, 30, text_bottom_row);
video_box(0, 0, STANDARD_X, STANDARD_Y, 0); // clear the screen
video_box(31 * 4, 28 * 4, 49 * 4 - 1, 32 * 4 - 1, background_color);

FPGAcademy.org
Aug 2024

45

https://www.fpgacademy.org

For Quartus® Prime 24.1

}

/***
* Subroutine to send a string of text to the video monitor

**/
void video_text(int x, int y, char * text_ptr) {

int offset;
volatile char * character_buffer =

(char *)FPGA_CHAR_BASE; // video character buffer

/* assume that the text string fits on one line */
offset = (y << 7) + x;
while (*(text_ptr)) {

*(character_buffer + offset) =

*(text_ptr); // write to the character buffer
++text_ptr;
++offset;

}
}

/***
* Draw a filled rectangle on the video monitor

* Takes in points assuming 320x240 resolution and adjusts based on differences

* in resolution and color bits.

**/
void video_box(int x1, int y1, int x2, int y2, short pixel_color) {

int pixel_buf_ptr = *(int *)PIXEL_BUF_CTRL_BASE;
int pixel_ptr, row, col;
int x_factor = 0x1 << (res_offset + col_offset);
int y_factor = 0x1 << (res_offset);
x1 = x1 / x_factor;
x2 = x2 / x_factor;
y1 = y1 / y_factor;
y2 = y2 / y_factor;

/* assume that the box coordinates are valid */
for (row = y1; row <= y2; row++)

for (col = x1; col <= x2; ++col) {
pixel_ptr = pixel_buf_ptr +

(row << (10 - res_offset - col_offset)) + (col << 1);

*(short *)pixel_ptr = pixel_color; // set pixel color
}

}

/**
* Resamples 24-bit color to 16-bit or 8-bit color

***/
int resample_rgb(int num_bits, int color) {

if (num_bits == 8) {
color = (((color >> 16) & 0x000000E0) | ((color >> 11) & 0x0000001C) |

((color >> 6) & 0x00000003));

46 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

color = (color << 8) | color;
} else if (num_bits == 16) {

color = (((color >> 8) & 0x0000F800) | ((color >> 5) & 0x000007E0) |
((color >> 3) & 0x0000001F));

}
return color;

}

/**
* Finds the number of data bits from the mode

***/
int get_data_bits(int mode) {

switch (mode) {
case 0x0:

return 1;
case 0x7:

return 8;
case 0x11:

return 8;
case 0x12:

return 9;
case 0x14:

return 16;
case 0x17:

return 24;
case 0x19:

return 30;
case 0x31:

return 8;
case 0x32:

return 12;
case 0x33:

return 16;
case 0x37:

return 32;
case 0x39:

return 40;
}
return -1; // error

}

Listing 8. An example of code that uses the video-out port.

FPGAcademy.org
Aug 2024

47

https://www.fpgacademy.org

For Quartus® Prime 24.1

8.6 PS/2

#include "address_map_niosv.h"

/* function prototypes */
void HEX_PS2(char, char, char);

/***
* This program demonstrates use of the PS/2 port by displaying the last three

* bytes of data received from the PS/2 port on the HEX displays.

**/
int main(void) {

/* Declare volatile pointers to I/O registers (volatile means that IO load
and store instructions will be used to access these pointer locations,
instead of regular memory loads and stores) */

volatile int * PS2_ptr = (int *)PS2_BASE;

int PS2_data, RVALID;
char byte1 = 0, byte2 = 0, byte3 = 0;

// PS/2 mouse needs to be reset (must be already plugged in)

*(PS2_ptr) = 0xFF; // reset

while (1) {
PS2_data = *(PS2_ptr); // read the Data register in the PS/2 port
RVALID = PS2_data & 0x8000; // extract the RVALID field
if (RVALID) {

/* shift the next data byte into the display */
byte1 = byte2;
byte2 = byte3;
byte3 = PS2_data & 0xFF;
HEX_PS2(byte1, byte2, byte3);

if ((byte2 == (char)0xAA) && (byte3 == (char)0x00))
// mouse inserted; initialize sending of data

*(PS2_ptr) = 0xF4;
}

}
}

/**
* Subroutine to show a string of HEX data on the HEX displays

**/
void HEX_PS2(char b1, char b2, char b3) {

volatile int * HEX3_HEX0_ptr = (int *)HEX3_HEX0_BASE;
volatile int * HEX5_HEX4_ptr = (int *)HEX5_HEX4_BASE;

/* SEVEN_SEGMENT_DECODE_TABLE gives the on/off settings for all segments in

* a single 7-seg display in the DE1-SoC Computer, for the hex digits 0 - F

*/
unsigned char seven_seg_decode_table[] = {

48 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07,
0x7F, 0x67, 0x77, 0x7C, 0x39, 0x5E, 0x79, 0x71};

unsigned char hex_segs[] = {0, 0, 0, 0, 0, 0, 0, 0};
unsigned int shift_buffer, nibble;
unsigned char code;
int i;

shift_buffer = (b1 << 16) | (b2 << 8) | b3;
for (i = 0; i < 6; ++i) {

nibble = shift_buffer & 0x0000000F; // character is in rightmost nibble
code = seven_seg_decode_table[nibble];
hex_segs[i] = code;
shift_buffer = shift_buffer >> 4;

}
/* drive the hex displays */

*(HEX3_HEX0_ptr) = *(int *)(hex_segs);

*(HEX5_HEX4_ptr) = *(int *)(hex_segs + 4);
}

Listing 9. An example of code that uses the PS/2 port.

FPGAcademy.org
Aug 2024

49

https://www.fpgacademy.org

For Quartus® Prime 24.1

8.7 Floating Point

/***
* This program demonstrates use of floating-point numbers

*
* It performs the following:

* 1. reads two FP numbers from the Terminal window

* 2. performs +, -, *, and / on the numbers

* 3. prints the results on the Terminal window

* Note: Please enable "Echo input" in the terminal window

**/
#include <stdio.h>

int flush()
{

while (getchar() != ’\n’)
;

return 1;
}

int main(void)
{

float x, y, add, sub, mult, div;

while (1)
{

printf("Enter FP values X: ");

while ((scanf("%f", &x) != 1) && flush())
; // get valid floating point value and flush the invalid input

printf("%f\n", x); // echo the typed data to the Terminal window

printf("Enter FP values Y: ");

while ((scanf("%f", &y) != 1) && flush())
; // get valid floating point value and flush the invalid input

printf("%f\n", y); // echo the typed data to the Terminal window

add = x + y;
sub = x - y;
mult = x * y;
div = x / y;
printf("X + Y = %f\n", add);
printf("X - Y = %f\n", sub);
printf("X * Y = %f\n", mult);
printf("X / Y = %f\n", div);

}
}

Listing 10. An example of code that uses floating-point variables.

50 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

8.8 Include Files

/***
* This file provides address values that exist in the DE1-SoC Computer

**/

/* Memory */
.equ DDR_BASE, 0x40000000
.equ DDR_END, 0x7FFFFFFF
.equ A9_ONCHIP_BASE, 0xFFFF0000
.equ A9_ONCHIP_END, 0xFFFFFFFF
.equ SDRAM_BASE, 0x00000000
.equ SDRAM_END, 0x03FFFFFF
.equ FPGA_PIXEL_BUF_BASE, 0x08000000
.equ FPGA_PIXEL_BUF_END, 0x0803FFFF
.equ FPGA_CHAR_BASE, 0x09000000
.equ FPGA_CHAR_END, 0x09001FFF

/* Cyclone V FPGA devices */
.equ LED_BASE, 0xFF200000
.equ LEDR_BASE, 0xFF200000
.equ HEX3_HEX0_BASE, 0xFF200020
.equ HEX5_HEX4_BASE, 0xFF200030
.equ SW_BASE, 0xFF200040
.equ KEY_BASE, 0xFF200050
.equ JP1_BASE, 0xFF200060
.equ JP2_BASE, 0xFF200070
.equ PS2_BASE, 0xFF200100
.equ PS2_DUAL_BASE, 0xFF200108
.equ JTAG_UART_BASE, 0xFF201000
.equ IrDA_BASE, 0xFF201020
.equ TIMER_BASE, 0xFF202000
.equ TIMER_2_BASE, 0xFF202020
.equ AV_CONFIG_BASE, 0xFF203000
.equ PIXEL_BUF_CTRL_BASE, 0xFF203020
.equ CHAR_BUF_CTRL_BASE, 0xFF203030
.equ AUDIO_BASE, 0xFF203040
.equ VIDEO_IN_BASE, 0xFF203060
.equ EDGE_DETECT_CTRL_BASE, 0xFF203070
.equ ADC_BASE, 0xFF204000

/* Nios V memory-mapped registers */
.equ MTIME_BASE, 0xFF202100

Listing 11. The address_map_niosv.s include file.

FPGAcademy.org
Aug 2024

51

https://www.fpgacademy.org

For Quartus® Prime 24.1

/***
* This file provides address values that exist in the DE1-SoC Computer

**/

#ifndef __SYSTEM_INFO__
#define __SYSTEM_INFO__

#define BOARD "DE1-SoC"

/* Memory */
#define DDR_BASE 0x40000000
#define DDR_END 0x7FFFFFFF
#define SDRAM_BASE 0x00000000
#define SDRAM_END 0x03FFFFFF
#define FPGA_PIXEL_BUF_BASE 0x08000000
#define FPGA_PIXEL_BUF_END 0x0803FFFF
#define FPGA_CHAR_BASE 0x09000000
#define FPGA_CHAR_END 0x09001FFF

/* Cyclone V FPGA devices */
#define LED_BASE 0xFF200000
#define LEDR_BASE 0xFF200000
#define HEX3_HEX0_BASE 0xFF200020
#define HEX5_HEX4_BASE 0xFF200030
#define SW_BASE 0xFF200040
#define KEY_BASE 0xFF200050
#define JP1_BASE 0xFF200060
#define JP2_BASE 0xFF200070
#define PS2_BASE 0xFF200100
#define PS2_DUAL_BASE 0xFF200108
#define JTAG_UART_BASE 0xFF201000
#define IrDA_BASE 0xFF201020
#define TIMER_BASE 0xFF202000
#define TIMER_2_BASE 0xFF202020
#define AV_CONFIG_BASE 0xFF203000
#define RGB_RESAMPLER_BASE 0xFF203010
#define PIXEL_BUF_CTRL_BASE 0xFF203020
#define CHAR_BUF_CTRL_BASE 0xFF203030
#define AUDIO_BASE 0xFF203040
#define VIDEO_IN_BASE 0xFF203060
#define EDGE_DETECT_CTRL_BASE 0xFF203070
#define ADC_BASE 0xFF204000

/* Cyclone V HPS devices */
#define MTIME_BASE 0xFF202100

#endif

Listing 12. The address_map_niosv.h include file.

52 FPGAcademy.org
Aug 2024

https://www.fpgacademy.org

For Quartus® Prime 24.1

Copyright © FPGAcademy.org. All rights reserved. FPGAcademy and the FPGAcademy logo are trademarks of
FPGAcademy.org. This document is being provided on an “as-is” basis and as an accommodation and therefore
all warranties, representations or guarantees of any kind (whether express, implied or statutory) including, with-
out limitation, warranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically
disclaimed.

**Other names and brands may be claimed as the property of others.

FPGAcademy.org
Aug 2024

53

https://www.fpgacademy.org

	1 Introduction
	2 DE1-SoC Computer with Nios V Contents
	2.1 Getting Started with the DE1-SoC Computer with Nios V
	2.1.1 Using the CPUlator Simulator
	2.1.2 Using the Monitor Program with an FPGA Hardware Board
	2.1.3 Using GDB with an FPGA Hardware Board

	2.2 Nios® V Processor
	2.2.1 Nios V Machine Timer and Software Interrupt Registers

	2.3 Memory Components
	2.3.1 SDRAM
	2.3.2 DDR3 Memory
	2.3.3 On-Chip Memory
	2.3.4 On-Chip Memory Character Buffer

	2.4 Parallel Ports
	2.4.1 Red LED Parallel Port
	2.4.2 7-Segment Displays Parallel Port
	2.4.3 Slider Switch Parallel Port
	2.4.4 Pushbutton Key Parallel Port
	2.4.5 Expansion Parallel Port
	2.4.6 Using the Parallel Ports with Assembly Language Code and C Code

	2.5 JTAG* Port
	2.5.1 Using the JTAG* UART with Assembly Language Code and C Code

	2.6 Interval Timers
	2.7 G-Sensor

	3 Exceptions and Interrupts
	3.1 Interrupts from the Nios V Software Interrupts and Machine Timer
	3.2 Interrupts from the FPGA Interval Timer
	3.3 Interrupts from Parallel Ports
	3.3.1 Interrupts from the Pushbutton KEY Port

	3.4 Interrupts from the JTAG* UART
	3.5 Using Interrupts with Assembly Language Code
	3.6 Using Interrupts with C Code

	4 Media Components
	4.1 Audio In/Out Port
	4.2 Video-out Port
	4.2.1 Pixel Buffer
	4.2.2 RGB Resampling
	4.2.3 Double Buffering
	4.2.4 Character Buffer
	4.2.5 Using the Video-out Port with C code

	4.3 Video-in Port
	4.3.1 DMA Controller for Video

	4.4 Audio/Video Configuration Module
	4.5 PS/2 Port
	4.5.1 PS/2 Port Dual

	4.6 IrDA* Infrared Serial Port
	4.7 Analog-to-Digital Conversion Port
	4.8 Floating-point Hardware

	5 Modifying the DE1-SoC Computer with Nios V
	6 Making the System the Default Configuration
	7 Memory Layout
	8 Appendix
	8.1 Parallel Ports
	8.2 JTAG* UART
	8.3 Interrupts
	8.4 Audio
	8.5 Video Out
	8.6 PS/2
	8.7 Floating Point
	8.8 Include Files

