For Quartus® Prime 24.1

1 Introduction

This document describes a computer system that can be implemented on the DE1-SoC development and education board, which is described in the Teaching and Projects Boards section of the FPGAcademy.org website. This system, called the *DE1-SoC Computer with Nios V*, is intended for use in experiments on computer organization and embedded systems.

To support such experiments, the computer system contains embedded processors, memory, basic I/O devices like switches and lights, audio and video devices, and various other I/O peripherals. The FPGA programming file that implements this system, as well as its design source files, can be obtained from its GitHub repository.

2 DE1-SoC Computer with Nios V Contents

A block diagram of the *DE1-SoC Computer with Nios V* is shown in Figure 1. As indicated in the figure, the components in this system are implemented utilizing both the FPGA and the *Hard Processor System* (HPS) inside Altera's Cyclone[®] V SoC chip. The FPGA implements two Nios V[®] processors and several peripheral ports: memory, timer modules, audio-in/out, video-in/out, PS/2, analog-to-digital, infrared receive/transmit, and parallel ports connected to switches and lights. The HPS comprises an ARM* Cortex* A9 dual-core processor and a set of peripheral devices. Some of these HPS peripheral devices can be accessed by Nios V. Instructions for using the HPS with the ARM processor can be found in the document entitled *DE1-SoC Computer System with ARM* Cortex* A9*, which is available on the FPGAcademy.org website.

2.1 Getting Started with the DE1-SoC Computer with Nios V

To make use of the *DE1-SoC Computer with Nios V* you need to be able to assemble software programs for the Nios V processor and then execute these programs in the computer system. There are two main approaches for getting started: using a simulation of the computer system, or using an FPGA board that implements the computer system in hardware.

2.1.1 Using the CPUlator Simulator

The *CPUlator* is a powerful and easy-to-use functional simulator that runs inside a web browser. It simulates the behavior of a whole computer system, including the processor, memory, and many types of I/O devices. The CPUlator simulator supports a variety of different computer systems, including the *DE1-SoC Computer with Nios V*.

The CPUlator user interface displays all of the information that a programmer needs to develop and debug software code running on the *DE1-SoC Computer with Nios V*. It shows (and allows you to edit) the values in the processor general-purpose and control registers, as well as the contents of memories in the computer system and the values of

Figure 1. Block diagram of the DE1-SoC Computer with Nios V.

memory-mapped I/O device registers. The CPUlator allows software code, written either in assembly language or the C language, to be entered into the simulator, assembled to produce machine code, loaded into memory, and then executed. The user can set breakpoints in the machine code, single-step instructions, and perform any of the usual operations that are supported in typical debugging environments. A screen capture of the CPUlator user interface is shown in Figure 2. It displays the processor registers on the left-hand side (by default) of the screen, the program code in the middle, and graphical representations of I/O devices on the right-hand side.

2.1.2 Using the Monitor Program with an FPGA Hardware Board

The *DE1-SoC Computer with Nios V* can be implemented using a DE1-SoC hardware board. An easy way to begin working with this computer system is to make use of the utility called the *Monitor Program*. It provides an easy way to assemble/compile Nios V programs written in either assembly language or the C language. The Monitor Program, which can be downloaded from the Software Tools section of the FPGAcademy.org website, is an application program that runs on the host computer connected to the DE1-SoC board. The Monitor Program can be used to control the execution of code on Nios V, list (and edit) the contents of processor registers, display/edit the contents of memory on the DE1-SoC board, and similar operations. The Monitor Program includes the DE1-SoC Computer as a pre-designed system that can be downloaded onto the DE1-SoC board, as well as several sample programs in assembly language and C that show how to use the *DE1-SoC Computer with Nios V* peripheral devices.

pc 00 zero x0 00 rax1 00 sp x2 00 gp x3 00 t0x5 ff t1x6 ff t2x7 00 a0 x10 00 a1 x11 00 a2 x12 00 a3 x13 00 a4 x14 00 a5 x15 00 a6 x16 00 a7 x17 00 s5 x21 ff s6 x42 00 c6 x16 00 a7 x17 00 s5 x21 ff s6 x22 00	3000003(3000002(3000002) 3000000(3000000(5720004(5720004(5720004(5720004(5720004(5000000) 3000000(3000000(3000000(3000000(C Editor (Compile a 1 1 # Proj 2 # an ' 3 .equ 4 .equ 5 .equ 6 .equ 9 .globi 10 .start 13 .4 15 .6	Ctrl-E) and Load (F5) gram that di: interrupt is LEDR_BASE, 0: HES3_HEX0_BASE, 0X: KEY_BASE, 0X: KEY_INT, 0X: al _start t: li la csrw li	Language: R splays SW sw generated an xff200000 SE, 0xff20002 ff200040 ff200050 0000 sp, 0x2000 t0, handlo	RV32 → p itch sett nd the ha 20	bart1.s tings on andler di # KEY	LEDR. When isplays SW port is II	a KEY is on HEXO RQ 18	s pressed,	Devices LEDs ff2 Switches ff2 Switches ff2 P 8 7 6 5 4 3 2 1 0 Ai P 8 7 6 5 4 3 2 1 0 Ai P 8 7 6 5 4 3 2 1 0 Ai P 8 7 6 5 4 3 2 1 0 Ai Switches IRQ 18 ff2 Switches IRQ 18 ff2 Switches IRQ 18 ff2
fresh pc 000 zero x0 000 000 ra x1 000 000 gp x2 000 000 gp x3 000 000 t0 x5 fff 100 t1 x6 fff 12 x7 d0 x10 000 a1 x11 00 a1 x11 000 a5 x15 000 a5 x15 000 a7 x17 000 s2 x18 fff 55 x21 fff s5 x21 ff6 s5 x22 000	300003(300000; 300002; 300000; 300000; 3000006; 3000006; 7120004; 7120004; 7120004; 900000; 3000006; 3000006; 3000006; 3000006; 3000006;	Compile a 1 # Proj 2 # an - 3 .equ f 5 .equ f 6 .equ f 7 .equ f 8 .equ f 10 - 11start 12 - 13 - 14 - 15 - 16 -	and Load (F5) gram that dis interrupt is LEDR_BASE, 0: EX3_HEX0_BAS W_BASE, 0x: KEY_INT, 0x4(al _start t: li la csrw li	Language: R splays SW sw generated ar ff200000 SE, 0xff20000 ff200040 ff200050 0000 sp, 0x2000 t0, handlo	<pre>W32 ∨ p itch sett nd the ha 20</pre>	bart1.s tings on andler di # KEY	LEDR. When isplays SW port is II	a KEY is on HEX0 RQ 18	s pressed,	LEDs ff2 Switches ff2 Switches ff2 Switches ff2 Switches ff2 Switches ff2 Switches IRQ 18 ff2 J Switches IRQ 18 ff2 Switches ff2 Switches ff2 Switches ff2
pc 000 zero x0 000 ra x1 000 sp x2 000 gp x3 000 t0 x5 ff t1 x6 ff t2 x7 000 a0 x10 000 a1 x11 00 a5 x15 000 a6 x16 000 a7 x17 000 s2 x12 000 a5 x15 000 a5 x16 000 a5 x17 000 s2 x12 010 a5 x15 000 a5 x15 000 a5 x10 000 s3 x19 000 s5 x21 010 s5 x22 000	000003(000002(0000002(0000000(0000000(ff20004(000fd60) ff20004(000fd60) ff20004(0000006- 0000006- 0000000(0000000(0000000(0000000(1 # Proj 2 # an - 3 .equ H 5 .equ H 6 .equ H 7 .equ H 8 9 .globa 10 11 _star 12 13 14 15 16	gram that dis interrupt is LEDR_BASE, 0: IEX3_HEX0_BA'S SW_BASE, 0x: KEY_INT, 0x4(al _start t: li la csrw li	splays SW sw generated an xff200000 5200040 ff200050 30000 sp, 0x2000 t0, handl	itch sett nd the ha 20 00	tings on andler di # KEY	LEDR. When isplays SW port is II	a KEY is on HEXO	pressed,	Switches ff2 9 7 6 4 2 1 0 9 7 6 4 3 1 0 0 9 8 7 6 4 3 1 0
zero x0 00 ra x1 00 sp x2 00 gp x3 00 tp x4 00 al x11 00 al x12 00 al x14	000000(000002(0002000(0000000(ff20004(000fd01 ff20004(000fd01 ff20004(000000(0000006(000000(000000(000000(000000(2 # an 3 .equ 4 .equ 5 .equ 6 .equ 7 .equ 8 9 .globa 10 11star 12 13 14 15 16	Interrupt is LEDR_BASE, 00: HEX3_HEX0_BASE, 00: HEX3_HEX0_BASE, 00: KEY_BASE, 00: KEY_INT, 00: (EY_INT, 00: Alstart t: li la csrw li	generated an xff200000 SE, 0xff20002 ff200040 ff200050 0000 sp, 0x2000 t0, handlu	nd the ha 20 00	andler di # KEY	isplays SW port is II	on HEX0 2Q 18		Switches ff2 9 7 6 5 1 0 A 0 Push buttons IRQ 18 ff2 1 0 A 1 0 Push buttons IRQ 18 ff2 1 0 A 2 1 0 A 1 0<
rax1 00 sp x3 00 tp x3 00 tp x4 00 tp x5 00 tp x4 00 tp x5 00 tp x4 00 tp x4 00 sp x5 00 sp x5 00 sp x5 00 sp x5 00 a3 x13 00 a6 x16 00 a6 x16 00 a6 x16 00 sp x17 00 sp x22 00 <td>0000002(002000(0000000(ff20004(000fd60) ff20004(000fd60) ff20004(0000000; 00000000(0000000(0000000(0000000(000000</td> <td>3 .equ 4 4 .equ 4 5 .equ 4 6 .equ 4 7 .equ 1 8 9 .globa 10 11 _start 12 13 14 15 16</td> <td>LEDR_BASE, 0; HEX3_HEX0_BA'S W_BASE, 0xf KEY_BASE, 0x KEY_INT, 0x40 al _start t: li la csrw li</td> <td><pre>xff200000 SE, 0xff20002 f200040 ff200050 0000 sp, 0x2000 t0, handlu</pre></td> <td>20</td> <td># KEY</td> <td>port is I</td> <td>Q 18</td> <td></td> <td>9 8 7 6 5 4 3 2 1 0 All 9 9 8 7 6 5 4 3 2 1 0 All 9 9 8 7 6 5 4 3 2 1 0 All 9 9 10 All 1</td>	0000002(002000(0000000(ff20004(000fd60) ff20004(000fd60) ff20004(0000000; 00000000(0000000(0000000(0000000(000000	3 .equ 4 4 .equ 4 5 .equ 4 6 .equ 4 7 .equ 1 8 9 .globa 10 11 _start 12 13 14 15 16	LEDR_BASE, 0; HEX3_HEX0_BA'S W_BASE, 0xf KEY_BASE, 0x KEY_INT, 0x40 al _start t: li la csrw li	<pre>xff200000 SE, 0xff20002 f200040 ff200050 0000 sp, 0x2000 t0, handlu</pre>	20	# KEY	port is I	Q 18		9 8 7 6 5 4 3 2 1 0 All 9 9 8 7 6 5 4 3 2 1 0 All 9 9 8 7 6 5 4 3 2 1 0 All 9 9 10 All 1
sp x2 000 gp x3 000 tp x4 000 s0 x8 ff s1 x9 ff a0 x10 000 a1 x11 000 a3 x13 000 a4 x14 000 a5 x15 000 a6 x16 000 a7 x17 000 s4 x20 000 s5 x21 ff s6 x5 x22 000 s7 x22 000	00020006 00000006 00000006 ff200004 000fd601 ff20004 ff20004 0000006 00000006 00000006 00000006 000000	4 .equ 4 5 .equ 5 6 .equ 4 7 .equ 4 8 9 .globa 10 11 _start 12 13 14 15 16	HEX3_HEX0_BAS SW_BASE, 0xf (EY_BASE, 0x (EY_INT, 0x40 al _start t: li la csrw li	SE, 0xff20002 f200040 ff200050 0000 sp, 0x2000 t0, handlu	20	# KEY	port is I	Q 18		9 8 7 6 5 4 3 2 1 0 All © Push buttons IRQ 18 ff2 3 2 1 0 All
gp x3 000 tp x4 000 tp x4 000 tp x4 000 tp x5 ff t1 x6 ff t2 x7 000 s0 x8 ff a0 x10 000 a1 x11 000 a3 x13 000 a4 x14 000 a5 x15 000 a6 x16 000 a7 x17 000 s3 x19 000 s4 x20 000 s5 x21 ff s6 x22 000 s7 x22 000	0000000 0000000 ff20000 ff20004 ff20004 ff20004 ff20004 ff20000 000000 0000000 0000000 0000000 0000	5 .equ 9 6 .equ 1 7 .equ 1 9 .globa 10 11 _starr 12 13 14 15 16	SW_BASE, 0xf KEY_BASE, 0xt KEY_INT, 0x4(al _start t: li la csrw li	f200040 ff200050 0000 sp, 0x2000 t0, handle	00	# KEY	port is I	Q 18		Image: Constraint of the second se
tp x4 60 t0 x5 fff t1 x6 fff t2 x7 off s0 x10 66 a0 x10 66 a1 x11 of a2 x12 of a3 x13 of a6 x16 of a7 x17 of s2 x12 of s4 x14 of s5 x15 of s6 x16 of s7 x17 of s5 x21 ff s6 x22 of s6 x22 of s7 x27 of	0000006 ff200004 ff200046 000fd601 ff200046 ff200006 0000006 0000006 0000006 0000006 0000006 0000006 0000006 0000006 0000006	6 .equ H 7 .equ H 8 9 .globa 10 11 _star 13 14 15 16	KEY_BASE, 0x: KEY_INT, 0x40 al_start t: li la csrw li	ff200050 0000 sp, 0x2000 t0, handle	00	# KEY	port is II	RQ 18		3 2 1 0 A
LU X3 It X6 ff LT X6 ff lt X7 06 S0 X8 ff lt X10 06 al X11 06 a2 X12 06 al X11 06 a5 X15 06 ab X17 06 a5 X16 06 ab X17 06 s2 X18 07 s3 X19 06 s4 X20 06 s5 X21 ff s6 X22 06 s5 X21 ff s6 X22 06	120000 120004 120004 120004 120004 120004 120004 120000 120000 120000 120000 120000 12000 120004 120000 120000 12000000 120000000 120000000 120000000 120000000 1200000000 1200000000 1200000000 1200000000 1200000000 12000000000 120000000000	7 .equ 8 9 .globa 10 11 _star 12 13 14 15 16	KEY_INT, 0x40 al _start t: li la csrw li	sp, 0x2000 t0, handle	00	# KEY	port is I	RQ 18		3 2 1 0 All
1 2 x7 0 00 50 x8 ff a0 x10 0 00 a1 x11 0 00 a2 x12 0 00 a3 x13 0 00 a4 x14 0 00 a5 x15 0 00 a6 x16 0 00 a7 x17 0 00 x2 x18 ff s3 x19 0 00 s4 x20 0 00 s5 x21 ff s6 x22 0 00 s5 x21 ff	2007d601 ff20004(ff20000; 2000000; 20000006 20000000; 20000000(20000000; 20000000(20000000; 20000000(20000000;	8 9.globa 10 11_stars 12 13 14 15 16	al_start t: li la csrw li	sp, 0x2000 t0, handlo	00					Seven segment displays
50 x8 ff s1 x9 ff a0 x10 66 a1 x11 66 a2 x12 66 a3 x13 66 a4 x14 66 a5 x15 66 a5 x15 66 a5 x17 66 s2 x18 ff s3 x19 66 s4 x20 66 s5 x21 ff s6 x22 66 s5 x23 66 s5 x25 76 s5 x22 66 s5 x25 76 s5 x5 7	ff20004(ff20000; 2000000; 2000000; 2000000; 2000000; 2000000; 2000000; 2000000; 2000000; 2000000;	9 .glob: 10 11 _star: 12 13 14 15 16	al_start t: li la csrw li	sp, 0x2000 t0, handle	00					Seven-segment displays
s1 x9 ff a0 x10 oc a1 x11 oc a2 x12 oc a3 x13 oc a4 x14 oc a5 x15 oc a6 x16 oc c7 x17 oc s4 x14 oc a5 x15 oc a6 x16 oc s5 x18 ff s3 x19 oc s5 x21 ff s6 x2.2 oc s7 x22 oc	ff200000 200000064 200000000 20000000 20000000 200000000 2000000	10 11 _star 12 13 14 15 16	t: li la csrw li	sp, 0x2000 t0, handle	00					a seven segment displays
a0 x10 0 cc a1 x11 0 cc a2 x12 0 cc a3 x13 0 0 cc a4 x14 0 cc a5 x15 0 cc a6 x16 0 0 cc a7 x17 0 cc s2 x18 ff s3 x19 0 cc s5 x21 ff s6 x22 0 cc s5 x21 ff s6 x22 0 cc		11 _star 12 13 14 15 16	t: li la csrw li	sp, 0x2000 t0, handle	00					
a1 x11 00 a2 x12 00 a3 x13 00 a4 x14 00 a5 x15 00 a6 x16 00 a7 x17 00 s2 x18 ff s3 x19 00 s5 x21 ff s6 x22 00 s5 x21 ff s6 x22 00	00000064 000000000 00000000000000000000	12 13 14 15 16	la csrw li	t0, handle		# set	up the sta	ick		
a2 x12 00 a3 x13 00 a4 x14 00 a5 x15 00 a6 x16 00 a7 x17 00 s2 x18 ff s3 x19 00 s4 x20 00 s5 x21 ff s6 x22 000 c7 x13 00	00000000 00000000 00000000 00000000 0000	13 14 15 16	csrw li		er					
a3 x13 00 a4 x14 00 a5 x15 00 a6 x16 00 a7 x17 00 s2 x18 ff s3 x19 00 s4 x20 00 s5 x21 ff s6 x22 000 c7 x13 00	00000000 00000000 00000000 00000000	14 15 16	11	mtvec, t0		# set	trap addr	ess		IRO 24 ff2
a5 x15 00 a6 x16 00 a7 x17 00 s2 x18 ff s3 x19 00 s4 x20 00 s5 x21 ff s6 x22 00 c7 x32 00	00000000 00000000 00000000	16		t0, KEY_I	NI	# KEY	port inte	rupt		
a6 x16 00 a7 x17 00 s2 x18 ff s3 x19 00 s4 x20 00 s5 x21 ff s6 x22 00 c7 x32 00	00000000	TO	csrs	mie, to	061000	# enat	ole KEY IN	interrupts		Contents of s1: 4280287312
a7 x17 000 s2 x18 ff s3 x19 000 s4 x20 000 s5 x21 ff s6 x22 000	0000000	17	CSISI	instatus, (001000	# enal	JLE NIOS V	merrupt	-5	Contents of s1: 4280287312
s2 x18 ff s3 x19 00 s4 x20 00 s5 x21 ff s6 x22 00		19	ial	sotup KEV	c .					Contents of s1: 4280287312
s3 x19 00 s4 x20 00 s5 x21 ff s6 x22 00	ff200050	19	jac	secup_kris	5					Contents of s1: 0xFF200050
s4 x20 00 s5 x21 ff s6 x22 00	90000000	20	14	to LEDR	BASE	# noir	ater to IFI	R port		JTAG UART example code
s6 x22 00	90000075	21	11	+1. SW BAS	SF	# poir	iter to SW	nort		> jkjkj
c7 x22 00	200056	22 loop:	lw	t3. (t1)	02	# read	d from SW	pore		jkjk
57 823 00	00000000	23	sw	t3, (t0)		# writ	te to LEDR			
s8 x24 00	0000000	24	i	loop						
s9 x25 00	0000000	25	2	•						Read FIFO: 0 Write FIFO: 0
s10 x26 00	90000000	26 # Tra	o handler							
s11 x27 00	0000000	27 handle	er: addi	sp, sp, -:	12	# save	e regs tha	: will be	modified	RISC-V Machine Timer IRQ 7 ff2
t3 x28 00	90000041	28	SW	t2, 8(sp)						8524575435 >= mtimecmp: 1000000
t5 x30 00	94444444	29	SW	t1, 4(sp)						
13 × 30 00	0000000	30	SW	t0, (<mark>sp</mark>)						🖬 😨 😯 Interval Timer 🛛 🛛 IRQ 16 ff2
	Call at a sky	31								6249999 Once Stop TO=0
Registers in C	Call Stack	32	# chee	ck for cause	of excep	otion				0245555 Once 5top 10-0
Trace T Break	akpoints	33	csrr	t0, mcause	e	# read	d mcause r	gister		RQ 17 ff2
Watchpoints		34	li	t1, 0×8000	00012	# 0x8.	checks	the inter	rupt bit	COMPAGE OTHER FORM TO D
Symbols 🛚 🟦 Co	Counters	35	xor	t1, t1, t0	0	# 0x12	2 (18) is :	RQ # for	KEY port	6249999 Once Stop 10=0
Cattings		36 stay:	bnez	tl, stay		# une>	xpected ca	ise of tra	ар	VGA nivel huffer
settings		37	1.4		405	# _1	an ana san			
mbor Display	w Ontio	38	11	t0, KEY_B/	ASE V	# clea	ar the inte	errupt		
	ay option	39	LW SW	+1 12(10))					
e: Word 🗸	<u></u>	40	SW	(1, 12(10))					
rmat: Hexadecii	cimal	42	11	to SW RAS	SF	# noir	ater to SW	port		
mony words nor	or rowr A	ER E VILLE						pore		
		Editor (C	(IFE) <td>sembly (Ctri-D)</td> <td>A Memor</td> <td>ry (Ctri-M)</td> <td>1</td> <td></td> <td></td> <td></td>	sembly (Ctri-D)	A Memor	ry (Ctri-M)	1			
Messages										
									Class	
mpiling									Clear	
de and data loa	baded from E	ELF executab	le into memory.	. Total size is 17	2 bytes.					
semble: riscv	v32-as -mar	ch=rv32imf_z	icsr_zicbom	gdwarf2 -o wor	rk/asmu2Lz)	(t.s.o wor	k/asmu2LzXt	S		

Figure 2. The CPUlator.

Some images that show how the *DE1-SoC Computer with Nios V* is integrated with the Monitor Program are given in Section **??**. An overview of the Monitor Program is available in the document *Monitor Program Tutorial for the Nios V Processor*, which is provided as part of the Computer Organization System Design tutorials on FPGAcademy.org.

2.1.3 Using GDB with an FPGA Hardware Board

The *Monitor Program* controls the FPGA hardware and the Nios V processor by using the industry-standard GNU Project Debugger (*GDB*). Instead of using the *Monitor Program*, you can debug code with the *GDB* tool directly.

2.2 Nios[®] V Processor

The Altera Nios[®] V processor is an implementation of the 32-bit RISC-V processor architecture. Three versions of Nios V exist, each with different features and capabilities. Documentation for these three versions, designated as *compact* (Nios V/c), *microcontroller* (Nios V/m), and *general purpose* (Nios V/g), can be found by searching on the Internet for keywords such as Nios V versions. The *DE1-SoC Computer with Nios V* includes two instances of the Nios V/m version. An overview of the Nios V processor can be found in the document *Introduction to Nios V*, which is available as part of the Computer Organization and System Design tutorials in the FPGAcademy.org website.

2.2.1 Nios V Machine Timer and Software Interrupt Registers

Nios V includes a 64-bit internal timer that is available to application programmers. The timer is reset to 0 when the DE1-SoC board is powered on, and then monotonically increases at the system clock rate, which is 100 MHz. The timer is accessible via two memory-mapped registers, called *mtime* (machine time) and *mtimecmp* (machine time compare). The *mtime* register provides the current timer value, and the *mtimecmp* register can be used to cause a timer interrupt. A Nios V timer interrupt will be pending whenever the value of *mtime* reaches or exceeds the value of *mtimecmp*. Interrupts are discussed in Section 3.

Since they are 64-bits wide, both *mtime* and *mtimecmp* comprise two 32-bit memory-mapped registers, one for the *low* word and the other for the *high* word. Nios V also contains a memory-mapped register called *msip* (machine software interrupt pending), which can be used by an application programmer to cause a *software interrupt*.

The *mtime*, *mtimecmp* and *msip* memory-mapped registers are are illustrated in Figure 3, which gives the assigned address of each register in the *DE1-SoC Computer with Nios V*.

Figure 3. Nios V memory-mapped registers.

2.3 Memory Components

The *DE1-SoC Computer with Nios V* has SDRAM and DDR3 memory ports, as well as two memory modules implemented using the on-chip memory inside the FPGA. These memories are described below.

2.3.1 SDRAM

An SDRAM Controller in the FPGA provides an interface to the 64 MB synchronous dynamic RAM (SDRAM) on the DE1-SoC board, which is organized as 32M x 16 bits. It is accessible by the Nios V processor using word (32-bit), halfword (16-bit), or byte operations, and is mapped to the address space 0x00000000 to 0x03FFFFF.

2.3.2 DDR3 Memory

A 1 GB DDR3 memory is connected to the HPS part of the Cyclone[®] V SoC chip. The memory is organized as 256M x 32-bits, and is accessible using word accesses (32 bits), halfwords, and bytes. The Nios V processor can access the DDR3 memory using the addresses space 0x40000000 to 0x7FFFFFF.

2.3.3 On-Chip Memory

A 256 KB memory is implemented inside the FPGA, organized as 64K x 32 bits. The Nios V processor can access this memory using addresses in the range 0x08000000 to 0x0803FFFF. This memory is used as a pixel buffer for the video-out and video-in ports.

2.3.4 On-Chip Memory Character Buffer

An 8 KB memory is implemented inside the FPGA for use as a character buffer for the video-out port, which is described in Section 4.2. The character buffer memory is organized as 8K x 8 bits, and spans the Nios V address range 0x09000000 to 0x09001FFF.

2.4 Parallel Ports

There are several parallel ports implemented in the FPGA that support input, output, and bidirectional transfers of data between the Nios V processor and I/O peripherals. As illustrated in Figure 4, each parallel port is assigned a *Base* address and contains up to four 32-bit registers. Ports that have output capability include a writable *Data* register, and ports with input capability have a readable *Data* register. Bidirectional parallel ports also include a *Direction* register that has the same bit-width as the *Data* register. Each bit in the *Data* register can be configured as an input by setting the corresponding bit in the *Direction* register to 0, or as an output by setting this bit position to 1. The *Direction* register is assigned the address *Base* + 4.

Figure 4. Parallel port registers in the DE1-SoC Computer with Nios V.

Some of the parallel ports have registers at addresses Base + 8 and Base + C, as indicated in Figure 4. These registers are discussed in Section 3.

2.4.1 Red LED Parallel Port

The red lights $LEDR_{9-0}$ on the DE1-SoC board are driven by an output parallel port, as illustrated in Figure 5. The port contains a 10-bit *Data* register, which has the address 0xFF200000. This register can be written or read by the processor using word accesses, and the upper bits not used in the registers are ignored.

Figure 5. Output parallel port for LEDR.

2.4.2 7-Segment Displays Parallel Port

There are two parallel ports connected to the 7-segment displays on the DE1-SoC board, each of which comprises a 32-bit write-only *Data* register. As indicated in Figure 6, the register at address 0xFF200020 drives digits *HEX3* to *HEX0*, and the register at address 0xFF200030 drives digits *HEX5* and *HEX4*. Data can be written into these two registers, and read back, by using word operations. This data directly controls the segments of each display, according to the bit locations given in Figure 6. The locations of segments 6 to 0 in each seven-segment display on the DE1-SoC board is illustrated on the right side of the figure.

Figure 6. Bit locations for the 7-segment displays parallel ports.

2.4.3 Slider Switch Parallel Port

The SW_{9-0} slider switches on the DE1-SoC board are connected to an input parallel port. As illustrated in Figure 7, this port comprises a 10-bit read-only *Data* register, which is mapped to address 0xFF200040.

Figure 7. Data register in the slider switch parallel port.

2.4.4 Pushbutton Key Parallel Port

The parallel port connected to the KEY_{3-0} pushbutton switches on the DE1-SoC board comprises three 4-bit registers, as shown in Figure 8. These registers have the base address 0xFF200050 and can be accessed using word operations. The read-only *Data* register provides the values of the switches KEY_{3-0} . The other two registers shown in Figure 8, at addresses 0xFF200058 and 0xFF20005C, are discussed in Section 3.

Figure 8. Registers used in the pushbutton parallel port.

2.4.5 Expansion Parallel Port

The *DE1-SoC Computer with Nios V* includes two bidirectional parallel ports that are connected to the *JP1* and *JP2* 40-pin headers on the DE1-SoC board. These parallel ports include the four 32-bit registers that were described previously for Figure 4. The base address of the port for JP1 is 0xFF200060, and for JP2 is 0xFF200070. Figure 9 gives a diagram of the 40-pin connectors on the DE1-SoC board, and shows how the respective parallel port *Data* register bits, D_{31-0} , are assigned to the pins on the connector. The figure shows that bit D_0 of the parallel port is assigned to the pin at the top right corner of the connector, bit D_1 is assigned below this, and so on. Note that some of the pins on the 40-pin header are not usable as input/output connections, and are therefore not used by the parallel ports. Also, only 32 of the 36 data pins that appear on each connector can be used.

Din 1		Л		Din 1		D	1
1 111 1		D_0		1 111 1		D_0	
		D_1				D_1	
	D_2	D_3			D_2	D_3	
	D_4	D_5			D_4	D_5	
	D_6	D_7			D_6	D ₇	
	Unu	ised			Unu	ised	
	D_8	D ₉			D_8	D ₉	
	D ₁₀	D ₁₁			D ₁₀	D ₁₁	
	D ₁₂	D ₁₃			D ₁₂	D ₁₃	
		D ₁₄				D ₁₄	
		D ₁₅				D ₁₅	
	D ₁₆	D ₁₇			D ₁₆	D ₁₇	
	D ₁₈	D ₁₉			D ₁₈	D ₁₉	
	D ₂₀	D ₂₁			D ₂₀	D ₂₁	
	Unu	ised			Unu	ised	
	D ₂₂	D ₂₃			D ₂₂	D ₂₃	
	D ₂₄	D ₂₅			D ₂₄	D ₂₅	
	D ₂₆	D ₂₇			D ₂₆	D ₂₇	
	D ₂₈	D ₂₉			D ₂₈	D ₂₉	
	D ₃₀	D ₃₁	Pin 40		D ₃₀	D ₃₁	Pin 40

Figure 9. Assignment of parallel port bits to pins on JP1 and JP2.

2.4.6 Using the Parallel Ports with Assembly Language Code and C Code

The *DE1-SoC Computer with Nios V* provides a convenient platform for experimenting with Nios V assembly language code, or C code. A simple example of such code is provided in the Appendix in Listings 1 and 2. Each of these listing *includes* a file that specifies the memory-mapped addresses of all peripheral devices in the *DE1-SoC Computer with Nios V*. These include files, called *address_map_niosv.s* and *address_map_niosv.h*, are provided in Listings 11 and 12. These include files are also used in other code samples described in this document.

The code in Listing 1 and 2 displays the values of the SW switches on the LED lights, and also shows a rotating pattern on the LEDs. This pattern is shifted in a loop, using a software delay to make the shifting slow enough to observe. The pattern can be changed to the values of the SW switches by pressing a pushbutton KEY. When a KEY is pressed, the program waits in a loop until it is released and then continues to display the pattern.

The source code files shown in Listings 1 and 2 are distributed as part of the Monitor Program. The files can be found under the heading *sample programs*, and are identified by the name *Getting Started*.

2.5 JTAG* Port

The JTAG* port implements a communication link between the DE1-SoC board and its host computer. This link can be used by the Altera Quartus[®] Prime software to transfer FPGA programming files into the DE1-SoC board, and by the Monitor Program, discussed in Section **??**. The JTAG port also includes a UART, which can be used to transfer character data between the host computer and programs that are executing on the Nios V processor. The programming interface of the JTAG UART consists of two 32-bit registers, as shown in Figure 10. The register

mapped to address 0xFF201000 is called the *Data* register and the register mapped to address 0xFF201004 is called the *Control* register.

Address	31 16	15	$14 \cdot \cdot \cdot 11$	10	9 8	7	1 0	_	
0xFF201000	RAVAIL	RVALID	LID Unused				TA	Data register	
0xFF201004	WSPACE	Unt	ised	AC V	NI RI		WE RE	Control register	

When character data from the host computer is received by the JTAG UART it is stored in a 64-character FIFO. The number of characters currently stored in this FIFO is indicated in the field *RAVAIL*, which are bits 31-16 of the *Data* register. If the receive FIFO overflows, then additional data is lost. When data is present in the receive FIFO, then the value of *RAVAIL* will be greater than 0 and the value of bit 15, *RVALID*, will be 1. Reading the character at the head of the FIFO, which is provided in bits 7-0, decrements the value of *RAVAIL* by one and returns this decremented value as part of the read operation. If no data is present in the receive FIFO, then *RVALID* will be set to 0 and the data in bits 7-0 is undefined.

The JTAG UART also includes a 64-character FIFO that stores data waiting to be transmitted to the host computer. Character data is loaded into this FIFO by performing a write to bits 7-0 of the *Data* register in Figure 10. Note that writing into this register has no effect on received data. The amount of space, *WSPACE*, currently available in the transmit FIFO is provided in bits 31-16 of the *Control* register. If the transmit FIFO is full, then any characters written to the *Data* register will be lost.

Bit 10 in the *Control* register, called AC, has the value 1 if the JTAG UART has been accessed by the host computer. This bit can be used to check if a working connection to the host computer has been established. The AC bit can be cleared to 0 by writing a 1 into it.

The Control register bits RE, WE, RI, and WI are described in Section 3.

2.5.1 Using the JTAG* UART with Assembly Language Code and C Code

Listings 3 and 4 give simple examples of assembly language and C code, respectively, that use the JTAG UART. Both versions of the code perform the same function, which is to first send an ASCII string to the JTAG UART, and then enter an endless loop. In the loop, the code reads character data that has been received by the JTAG UART, and echoes this data back to the UART for transmission. In the *CPUlator* simulator, there is a JTAG window that allows text to be typed and echoed. If the program is executed by using the Monitor Program, then any keyboard character that is typed into the *Terminal Window* of the Monitor Program will be echoed back, causing the character to appear in the *Terminal Window*.

The source code files shown in Listings 3 and 4 are made available as part of the Monitor Program. The files can be found under the heading *sample programs*, and are identified by the name *JTAG UART*.

FPGAcademy.org Aug 2024

2.6 Interval Timers

The *DE1-SoC Computer with Nios V* includes a timer module implemented in the FPGA that can be used by the Nios V processor. This timer can be loaded with a preset value, and then counts down to zero using a 100-MHz clock. The programming interface for the timer includes six 16-bit registers, as illustrated in Figure 11. The 16-bit register at address 0xFF202000 provides status information about the timer, and the register at address 0xFF202004 allows control settings to be made. The bit fields in these registers are described below:

- *TO* provides a timeout signal which is set to 1 by the timer when it has reached a count value of zero. The *TO* bit can be reset by writing a 0 into it.
- *RUN* is set to 1 by the timer whenever it is currently counting. Write operations to the status halfword do not affect the value of the *RUN* bit.

• *ITO* is used for generating interrupts, which are discussed in section 3.

- *CONT* affects the continuous operation of the timer. When the timer reaches a count value of zero it automatically reloads the specified starting count value. If *CONT* is set to 1, then the timer will continue counting down automatically. But if *CONT* = 0, then the timer will stop after it has reached a count value of 0.
- (START/STOP) is used to commence/suspend the operation of the timer by writing a 1 into the respective bit.

The two 16-bit registers at addresses 0xFF202008 and 0xFF20200C allow the period of the timer to be changed by setting the starting count value. The default setting gives a timer period of 125 msec. To achieve this period, the starting value of the count is 100 MHz × 125 msec = 12.5×10^6 . It is possible to capture a snapshot of the counter value at any time by performing a write to address 0xFF202010. This write operation causes the current 32-bit counter value to be stored into the two 16-bit timer registers at addresses 0xFF202010 and 0xFF202014. These registers can then be read to obtain the count value.

A second interval timer, which has an identical interface to the one described above, is also available in the FPGA, starting at the base address 0xFF202020.

Each Nios V processor has exclusive access to two interval timers, at the addresses given above.

2.7 G-Sensor

The *DE1-SoC Computer with Nios V* includes a 3D accelerometer (G-sensor) that is connected to the HPS. The Nios V processor can access this device via an I2C serial interface at the base address 0xFFC04000. More details can be found in the tutorial *Using the Accelerometer on DE-series Boards*.

3 Exceptions and Interrupts

The reset address of the Nios V processor in the *DE1-SoC Computer with Nios V* is set to 0x00000000. The address used for the trap handler for all other exceptions and interrupts can be set by the programmer (by writing to the *mtvec* control register). Table 1 gives the assignment of IRQ numbers to each of the I/O peripherals in the system. The rest of this section describes the interrupt behavior associated with the Nios V machine timer, the FPGA interval timer, parallel ports, and serial ports.

Device Name	IRQ #
Nios V software interrupt	3
Nios V machine timer	7
Interval timer	16
Second Interval timer	17
Pushbutton KEY port	18
Audio port	21
PS/2 port	22
PS/2 port dual	23
JTAG port	24
IrDA port	25
Serial port	26
JP1 Expansion port	27
JP2 Expansion port	28

Table 1. Hardware IRQ interrupt assignment for the DE1-SoC Computer with Nios V.

3.1 Interrupts from the Nios V Software Interrupts and Machine Timer

The IRQ numbers for the Nios V software interrupts register and machine timer are not system dependent and are part of the processor specification. The procedure that can be used to set up and handle these interrupts is described in the document *Introduction to Nios V*, which is available as part of the Computer Organization and System Design tutorials in the FPGAcademy.org website.

3.2 Interrupts from the FPGA Interval Timer

Figure 11, in Section 2.6, shows six registers that are associated with the interval timer. As we said in Section 2.6, the *TO* bit in the *Status* register is set to 1 when the timer reaches a count value of 0. It is possible to generate an interrupt when this occurs, by using the *ITO* bit in the *Control* register. Setting the *ITO* bit to 1 causes an interrupt request to be sent to the processor whenever *TO* becomes 1. After an interrupt occurs, it can be cleared by writing any value into the *Status* register.

3.3 Interrupts from Parallel Ports

Parallel ports were illustrated in Figure 4, which is reproduced as Figure 12. As the figure shows, parallel ports that support interrupts include two related registers at the addresses Base + 8 and Base + C. The *Interruptmask* register, which has the addresses Base + 8, specifies whether or not an interrupt signal should be sent to the processor when the data present at an input port changes value. Setting a bit location in this register to 1 allows interrupts to be generated, while setting the bit to 0 prevents interrupts. Finally, the parallel port may contain an *Edgecapture* register at address *Base* + C. Each bit in this register has the value 1 if the corresponding bit location in the parallel port has changed its value from 0 to 1. A bit in the *Edgecapture* register can be cleared to 0 by writing a 1 into the corresponding bit position, which clears any associated interrupt.

Figure 12. Registers used for interrupts from the parallel ports.

3.3.1 Interrupts from the Pushbutton KEY Port

Figure 8, reproduced as Figure 13, shows the registers associated with the pushbutton KEY port. The *Interruptmask* register allows interrupts to be generated when a key is pressed. Interrupts can be enabled individually for each key by setting its *Interruptmask* bit to 1. When a key is pressed, the corresponding bit in the *Edgecapture* register is set to 1 by the parallel port. This bit remains 1 until cleared to 0 by software. An interrupt service routine can read the *Edgecapture* register to determine which key/s has/have been pressed. An *Edgecapture* register bit can be cleared

by writing a logic value 1 into the bit position. Clearing the bit resets the corresponding interrupt signal being sent to the processor.

Figure 13. Registers used for interrupts from the pushbutton KEY port.

3.4 Interrupts from the JTAG* UART

Figure 10, reproduced as Figure 14, shows the *Data* and *Control* registers of the JTAG UART. As we said in Section 2.5, *RAVAIL* in the *Data* register gives the number of characters that are stored in the receive FIFO, and *WSPACE* gives the amount of unused space that is available in the transmit FIFO. The *RE* and *WE* bits in Figure 14 are used to enable processor interrupts associated with the receive and transmit FIFOs. When enabled, interrupts are generated when *RAVAIL* for the receive FIFO, or *WSPACE* for the transmit FIFO, exceeds 7. Pending interrupts are indicated in the Control register's *RI* and *WI* bits, and can be cleared by writing or reading data to/from the JTAG UART.

Figure 14. Interrupt bits in the JTAG UART registers.

3.5 Using Interrupts with Assembly Language Code

An example of assembly language code for the *DE1-SoC Computer with Nios V* that uses interrupts is shown in Listing 5. When this code is executed on the DE1-SoC board it first sets up interrupts from three devices: the Nios V machine timer, an FPGA interval timer, and the pushbutton KEY port. The code to initialize these devices is given in Lines 141 to 175 in Part (*d*) of Listing 5. Line 24 in Listing 5(a) initializes the stack pointer to the bottom of the 64 MB SDRAM on the DE1-SoC, and Lines 25 to 27 initialize the three interrupting devices. Interrupts are enabled in Lines 30 to 37. First, the address of the trap handler routine is written into the *mtvec* register, and then software interrupts, machine timer, interval timer, and KEY port interrupts are enabled by setting bits b_3 , b_7 , b_{16} and b_{18} , respectively, of the machine interrupt enable (*mie*) register. Finally, interrupts are enabled in Nios V by setting bit b_3 of the *mstatus* register.

Next, in Lines 40 to 42 the program makes a software interrupt occur, to illustrate how this is done. Finally, the main program loops in between Lines 51 and 57 while responding to interrupts from the timers and the KEY pushbutton port.

The trap handler is given in Lines 59 to 89. After first saving registers that will be modified, it reads the value of the *mcause* register. Based on this value, the trap handler calls the appropriate interrupt service routine.

The interrupt service routine for the software interrupt, in Lines 91 to 97, turns on most of the red lights in the LEDR port, to provide a visual indication of its execution.

The interrupt service routine for the Nios V machine timer, in Lines 99 to 114, adjusts the *mtimecmp* value for the next interrupt, and increments a counter variable. The main program displays this counter as a binary number on the red lights LEDR, which will increment for every timer interrupt.

The interrupt service routine for the FPGA interval timer, in Lines 116 to 129, increments a one-digit decimal counter. The main program displays this counter on the 7-segment display HEX0. The counter either increments or decrements, in the range 0 to 9. When a KEY is pressed, its corresponding interrupt service routine, in Lines 131 to 139, reverses the direction of counting on HEX0.

The remaining lines of code, in Listing 5(e), provide a subroutine for converting decimal digits to 7-segment display codes, and define the global variables that are used in the program.

3.6 Using Interrupts with C Code

An example of C code for the *DE1-SoC Computer with Nios V* that uses interrupts is shown in Listing 6. This code performs the same operations as the code in Listing 5. Lines 1 to 22 in the code declare some symbols, function prototypes, and global variables that are needed in the program. The function prototype for the *handler* subroutine, which is the trap handler in this program, is assigned the attribute interrupt ("machine"). This attribute instructs the C compiler to generate the appropriate assembly-language code for an interrupt handler: it saves and restores all registers that could be modified while the interrupt is being handled, and it returns to the interrupted program by using the mret instruction.

The main program declares pointers for accessing I/O devices in Lines 45 to 47. These pointers are given the volatile keyword, which tells the compiler that the value of the variables may change at any time, even if not modified in the code where they are declared (in this case the values may be modified by the interrupt service routines). Lines 49 to 51 in the code call subroutines that enable interrupts in the Nios V machine timer, the FPGA interval timer, and the KEY port.

Interrupts are enabled in the C code in lines 53 to 66 by inserting assembly-language code using the GNU C-compiler's __asm__ inline assembly feature. The steps performed by these lines of code are the same as those in Lines 29 to 37 of Listing 5.

Inline assembly-language code is also used in the *handler* routine, in Line 84 in Part (*b*) of Listing 6, to read the Nios V *mcause* register. The handler then calls the appropriate interrupt service routine. As mentioned above, the *handler* saves and restores all temporary registers, and returns to the main program using the mret instruction, because the handler is declared with the interrupt ("machine") attribute.

4 Media Components

This section describes the audio in/out, video-out, video-in, PS/2, IrDA*, and ADC ports, as well as floating point support.

4.1 Audio In/Out Port

The *DE1-SoC Computer with Nios V* includes an audio port that is connected to the audio CODEC (COder/DECoder) chip on the DE1-SoC board. The default setting for the sample rate provided by the audio CODEC is 8K samples/sec. The audio port provides audio-input capability via the microphone jack on the DE1-SoC board, as well as audio output functionality via the line-out jack. The audio port includes four FIFOs that are used to hold incoming and outgoing data. Incoming data is stored in the left- and right-channel *Read* FIFOs, and outgoing data is held in the left- and right-channel *Write* FIFOs. All FIFOs have a maximum depth of 128 32-bit words.

The audio port's programming interface consists of four 32-bit registers, as illustrated in Figure 15. The *Control* register, which has the address 0xFF203040, is readable to provide status information and writable to make control settings. Bit *RE* of this register provides an interrupt enable capability for incoming data. Setting this bit to 1 allows the audio core to generate a Nios V interrupt when either of the *Read* FIFOs are filled 75% or more. The bit *RI* will then be set to 1 to indicate that the interrupt is pending. The interrupt can be cleared by removing data from the *Read* FIFOs until both are less than 75% full. Bit *WE* gives an interrupt enable capability for outgoing data. Setting this bit to 1 allows the set to 1 allows the audio core to generate an interrupt when either of the *Write* FIFOs are less that 25% full. The bit *WI* will be set to 1 to indicate that the interrupt is pending, and it can be cleared by filling the *Write* FIFOs until both are more than 25% full. The bits *CR* and *CW* in Figure 15 can be set to 1 to clear the *Read* and *Write* FIFOs, respectively. The clear function remains active until the corresponding bit is set back to 0.

Figure 15. Audio port registers.

The read-only *Fifospace* register in Figure 15 contains four 8-bit fields. The fields *RARC* and *RALC* give the number of words currently stored in the right and left audio-input FIFOs, respectively. The fields *WSRC* and *WSLC* give the number of words currently available (that is, *unused*) for storing data in the right and left audio-out FIFOs. When all FIFOs in the audio port are cleared, the values provided in the *Fifospace* register are *RARC* = *RALC* = 0 and *WSRC* = *WSLC* = 128.

The *Leftdata* and *Rightdata* registers are readable for audio in, and writable for audio out. When data is read from these registers, it is provided from the head of the *Read* FIFOs, and when data is written into these registers it is loaded into the *Write* FIFOs.

A fragment of C code that uses the audio port is shown in Listing 7. The code checks to see when the depth of either the left or right *Read* FIFO has exceeded 75% full, and then moves the data from these FIFOs into a memory buffer. This code is part of a program that is distributed as part of the Monitor Program. The source code can be found under the heading *sample programs*, and is identified by the name *Audio*.

4.2 Video-out Port

The *DE1-SoC Computer with Nios V* includes a video-out port connected to the on-board VGA controller that can be connected to a standard VGA monitor. The video-out port support a screen resolution of 640×480 . The image that is displayed by the video-out port is derived from two sources: a *pixel* buffer, and a *character* buffer.

4.2.1 Pixel Buffer

The pixel buffer for the video-out port holds the data (color) for each pixel that will be displayed. As illustrated in Figure 16, the pixel buffer provides an image resolution of 320×240 pixels, with the coordinate 0,0 being at the top-left corner of the image. Since the video-out port supports the screen resolution of 640×480 , each of the pixel values in the pixel buffer is replicated in both the *x* and *y* dimensions when it is being displayed on the screen.

Figure 16. Pixel buffer coordinates.

Figure 17*a* shows that each pixel color is represented as a 16-bit halfword, with five bits for the blue and red components, and six bits for green. As depicted in part *b* of Figure 17, pixels are addressed in the pixel buffer by using the combination of a *base* address and an *x*, *y* offset. In the DE1-SoC Computer the default address of the pixel buffer is 0x08000000, which corresponds to the starting address of the FPGA on-chip memory. Using this scheme, the pixel at location 0,0 has the address 0x08000000, the pixel 1,0 has the address *base* + (00000000 000000000 0)₂ = 0x080000000, and the pixel at location 319,239 has the address *base* + (11101111 1001111111 0)₂ = 0x0803BE7E.

You can create an image by writing color values into the pixel addresses as described above. A dedicated *pixel buffer controller* continuously reads this pixel data from sequential addresses in the corresponding memory for display on

(b) Pixel address

Figure 17. Pixel values and addresses.

the screen. You can modify the pixel data at any time, simply by writing to the pixel addresses. Thus, an image can be changed even when it is in the process of being displayed. However, it is also possible to avoid making changes to the pixel buffer while it is being displayed, by using the concept of *double-buffering*. In this scheme, two pixel buffers are involved, called the *front* and *back* buffers, described below.

4.2.2 RGB Resampling

The DE1-SoC Computer contains an RGB Resampler for converting video streams between RGB color formats. Reading from the 32-bit *Status* register at address 0xFF203010 provides information about alpha/no alpha, color/grayscale, and mode for the incoming and outgoing formats. The incoming format for the DE1-SoC Computer video stream is 0x14, which corresponds to no alpha, color, 16-bit RGB (5-bit Red, 6-bit Green, 5-bit Blue). More information can be found in the documentation called *Video IP Cores for Altera DE-Series Computer Systems*, available as part of the Hardware Components tutorials on the FPGAcademy.org website.

4.2.3 Double Buffering

As mentioned above, a pixel buffer controller reads data out of the pixel buffer so that it can be displayed on the screen. This pixel buffer controller includes a programming interface in the form of a set of registers, as illustrated in Table 2. The register at address 0xFF203020 is called the *Buffer* register, and the register at address 0xFF203024 is the *Backbuffer* register. Each of these registers stores the starting address of a pixel buffer. The Buffer register holds the address of the pixel buffer that is displayed on the screen. As mentioned above, in the default configuration of the DE1-SoC Computer this Buffer register is set to the address 0x08000000, which points to the start of the FPGA on-chip memory. The default value of the Backbuffer register is also 0x08000000, which means that there is only one pixel buffer. But software can modify the address stored in the Backbuffer register, thereby creating a second pixel buffer. The pixel buffer can be located in the SDRAM memory in the DE1-SoC Computer, which has the base address 0x0000000. Note that the pixel buffer cannot be located in the DDR3 memory in the DE1-SoC Computer, because the pixel buffer controller is not connected to the DDR3 memory. An image can be drawn into the second buffer by writing to its pixel addresses. This image is not displayed on the screen until a pixel buffer *swap* is performed, as explained below.

FPGAcademy.org Aug 2024 A pixel buffer swap is caused by writing the value 1 to the Buffer register. This write operation does not directly modify the content of the Buffer register, but instead causes the contents of the Buffer and Backbuffer registers to be swapped. The swap operation does not happen right away; it occurs at the end of a screen-drawing cycle, after the last pixel in the bottom-right corner has been displayed. This time instance is referred to as the *vertical synchronization* time, and occurs every 1/60 seconds. Software can poll the value of the *S* bit in the *Status* register, at address 0xFF20302C, to see when the vertical synchronization has happened. Writing the value 1 into the Buffer register causes *S* to be set to 1. Then, when the swap of the Buffer and Backbuffer registers has been completed *S* is reset back to 0.

Address	Register	D /XX/		Bit Description							-
	Name	IX/ VV	3124	2316	1512	118	76	53	2	1	0
0xFF203020	Buffer	R		Buffer's start address							
0xFF203024	BackBuffer	R/W	Back buffer's start address								
0xFF203028	Resolution	R		Y	X						
0xEE20302C	Status	R	m n		(1)	BS	SB	(1)	EN	А	S
Control W					(1)				EN	(1	0

Notes:

(1) Reserved. Read values are undefined. Write zero.

Table 2. Pixel Buffer Controller

In a typical application the pixel buffer controller is used as follows. While the image contained in the pixel buffer that is pointed to by the Buffer register is being displayed, a new image is drawn into the pixel buffer pointed to by the Backbuffer register. When this new image is ready to be displayed, a pixel buffer swap is performed. Then, the pixel buffer that is now pointed to by the Backbuffer register, which was already displayed, is cleared and the next new image is drawn. In this way, the next image to be displayed is always drawn in the "back" pixel buffer, and the two pixel buffer pointers are swapped when the new image is ready to be displayed. Each time a swap is performed software has to synchronize with the video-out port by waiting until the *S* bit in the Status register becomes 0.

As shown in Table 2 the *Status* register contains additional information other than the *S* bit. The fields *n* and *m* give the number of address bits used for the *X* and *Y* pixel coordinates, respectively. The *BS* field specifies the number of data bits per symbol minus one. The *SB* field specifies the number of symbols per beat minus one. The *A* field allows the selection of two different ways of forming pixel addresses. If configured with A = 0, then the pixel controller expects addresses to contain *X* and *Y* fields, as we have used in this section. But if A = 1, then the controller expects addresses to be consecutive values starting from 0 and ending at the total number of pixels–1. The *EN* field is used to enable or disable the DMA controller. If this bit is set to 0, the DMA controller will be turned off.

In Table 2 the default values of the status register fields in the DE1-SoC Computer are used when forming pixel addresses. The defaults are n = 9, m = 8, and A = 0. If the pixel buffer controller is changed to provide different values of these fields, then the way in which pixel addresses are formed has to be modified accordingly. The programming interface also includes a *Resolution* register, shown in Table 2, that contains the X and Y resolution of the pixel buffer(s).

4.2.4 Character Buffer

The character buffer for the video-out port is stored in on-chip memory in the FPGA on the DE1-SoC board. As illustrated in Figure 18*a*, the buffer provides a resolution of 80 × 60 characters, where each character occupies an 8 × 8 block of pixels on the screen. Characters are stored in each of the locations shown in Figure 18*a* using their ASCII codes; when these character codes are displayed on the monitor, the character buffer automatically generates the corresponding pattern of pixels for each character using a built-in font. Part *b* of Figure 18 shows that characters are addressed in the memory by using the combination of a *base* address, which has the value 0x09000000, and an *x*, *y* offset. Using this scheme, the character at location 0,0 has the address 0x09000000, the character 1,0 has the address *base* + (000000 0000001)₂ = 0x09000001, the character 0,1 has the address *base* + (000001 0000000)₂ = 0x090000001, the character 1,0 has the address *base* + (111011 1001111)₂ = 0x09001DCF.

(b) Character buffer addresses

Figure 18. Character buffer coordinates and addresses.

4.2.5 Using the Video-out Port with C code

A fragment of C code that uses the pixel and character buffers is shown in Listing 8. The first **for** loop in the figure draws a rectangle in the pixel buffer using the color *pixel_color*. The rectangle is drawn using the coordinates x_1 , y_1 and x_2 , y_2 . The second **while** loop in the figure writes a null-terminated character string pointed to by the variable *text_ptr* into the character buffer at the coordinates *x*, *y*. The code in Listing 8 is included in the sample program called *Video* that is distributed with the Monitor Program.

4.3 Video-in Port

The *DE1-SoC Computer with Nios V* includes a video-in port for use with the composite video-in connector on the DE1-SoC board. The video analog-to-digital converter (ADC) connected to this port is configured to support an

NTSC video source. The video-in port provides frames of video at a resolution of 320 x 240 pixels. These video frames can be displayed on a monitor by using the video-out port described in Section 4.2. The video-in port writes each frame of the video-in data into the pixel buffer described in Section 4.2.1. The video-in port can be configured to provide two types of images: either the "raw" image provided by the video ADC, or a version of this image in which only "edges" that are detected in the image are drawn.

The video-in port has a programming interface that consists of two registers, as illustrated in Figure 19. The *Control* register at the address 0xFF20306C is used to enable or disable the video input. If the *EN* bit in this register is set to 0, then the video-in core does not store any data into the pixel buffer. Setting *EN* to 1 and then changing *EN* to 0 can be used to capture a still picture from the video-in port.

The register at address 0xFF203070 is used to enable or disable edge detection. Setting the *E* bit in this register to 1 causes the input video to passed through hardware circuits that detect edges in the images. The image stored in the pixel buffer will then consist of dark areas that are punctuated by lighter lines along the edges that have been detected. Setting E = 0 causes a normal image to be stored into the pixel buffer.

Figure 19. The video-in port programming interface.

4.3.1 DMA Controller for Video

The data provided by the Video-In core is stored into memory using a DMA Controller for Video. When operating in *Stream to Memory* mode, the DMA stores the incoming frames to memory. Table 3 describes the registers used in the DMA Controller.

Address	Register	D /XX/		Bit Description							
	Name	IX/ VV	3124	2316	1512	118	76	53	2	1	0
0xFF203060	Buffer	R	Buffer's start address								
0xFF203064	BackBuffer	R/W	Back buffer's start address								
0xFF203068	Resolution	R		Y	Х						
0xEE20306C	Status	R	m	n	(1)	BS	SB	(1)	EN	А	S
041120300C	Control	W			(1)				EN	(1	l)

Notes:

(1) Reserved. Read values are undefined. Write zero.

The incoming video is stored to memory, starting at the address specified in the *Buffer* register. The *BackBuffer* register is used to store an alternate memory location. To change where the video is stored, the new location should first be written into the *BackBuffer*. Then the value in the *BackBuffer* and *Buffer* registers can be switched by performing a write to the *Buffer* register.

Bit 2 of the *Status/Control* register, *EN*, is used to enable or disable the Video DMA controller. In the DE1-SoC Computer, the DMA controller is disabled by default. To enable the DMA controller, write a 1 into this location. The Video DMA Controller will then begin storing the video into the location specified in the *Buffer* register.

The default value stored in the *Buffer* register is 0x08000000. This address is also used as the source for the Video-Out port, as described in Section 4.2, allowing the Video In stream to be displayed on the VGA. If the Video-Out is intended to display a different signal, than the address stored in the Video DMA Controller's *Buffer* register should be changed.

4.4 Audio/Video Configuration Module

The audio/video configuration module controls settings that affect the operation of both the audio port and the video-out port. The audio/video configuration module automatically configures and initializes both of these ports whenever the *DE1-SoC Computer with Nios V* is reset. For typical use of the *DE1-SoC Computer with Nios V* it is not necessary to modify any of these default settings.

4.5 PS/2 Port

The *DE1-SoC Computer with Nios V* includes two PS/2 ports that can be connected to a standard PS/2 keyboard or mouse. The port includes a 256-byte FIFO that stores data received from a PS/2 device. The programming interface for the PS/2 port consists of two registers, as illustrated in Figure 20. The *PS2_Data* register is both readable and writable. When bit 15, *RVALID*, is 1, reading from this register provides the data at the head of the FIFO in the *Data* field, and the number of entries in the FIFO (including this read) in the *RAVAIL* field. When *RVALID* is 1, reading from the *PS2_Data* register can be used to send a command in the *Data* field to the PS/2 device.

The *PS2_Control* register can be used to enable interrupts from the PS/2 port by setting the *RE* field to the value 1. When this field is set, then the PS/2 port generates an interrupt when *RAVAIL* > 0. While the interrupt is pending the field *RI* will be set to 1, and it can be cleared by emptying the PS/2 port FIFO. The *CE* field in the *PS2_Control* register is used to indicate that an error occurred when sending a command to a PS/2 device.

Figure 20. PS/2 port registers.

A fragment of C code that uses the PS/2 port is given in Listing 9. This code reads the content of the *Data* register, and saves data when it is available. If the code is used continually in a loop, then it stores the last three bytes of data received from the PS/2 port in the variables $byte_1$, $byte_2$, and $byte_3$. This code is included as part of a sample program called *PS2* that is distributed with the Monitor Program.

4.5.1 PS/2 Port Dual

A second PS/2 port is included that allows both a keyboard and mouse to be used at the same time. To use the dual port a Y-splitter cable must be used and the keyboard and mouse must be connected to the PS/2 connector on the DE1-SoC board through this cable. The PS/2 port dual has the same registers as the PS/2 port shown in Listing 9, except that the base address of its *PS2_Data* register is 0xFF200108 and the base address of its *PS2_Control* register is 0xFF20010C.

4.6 IrDA* Infrared Serial Port

The IrDA port in the *DE1-SoC Computer with Nios V* implements a UART that is connected to the infrared transmit/receive device on the DE1-SoC board. This UART is configured for 8-bit data, one stop bit, and no parity, and operates at a baud rate of 115,200. The serial port's programming interface consists of two 32-bit registers, as illustrated in Figure 21. The register at address 0xFF201020 is referred to as the *Data* register, and the register at address 0xFF201024 is called the *Control* register.

Address	31 24	23 · · · 16	15	$14 \cdot \cdot \cdot 10$	9	8	7	1	0	
0xFF201020	Unused	RAVAIL	RVALID	Unused	PE		DA	ATA		Data register
0xFF201024	Unused	WSPACE	Un	used	WI	RI		WE	RE	Control register

When character data is received from the IrDA chip it is stored in a 256-character FIFO in the UART. As illustrated in Figure 21, the number of characters *RAVAIL* currently stored in this FIFO is provided in bits 23-16 of the *Data* register. If the receive FIFO overflows, then additional data is lost. When the data that is present in the receive FIFO is available for reading, then the value of bit 15, *RVALID*, will be 1. Reading the character at the head of the FIFO, which is provided in bits 7-0, decrements the value of *RAVAIL* by one and returns this decremented value as part of the read operation. If no data is available to be read from the receive FIFO, then *RVALID* will be set to 0 and the data in bits 7-0 is undefined.

The UART also includes a 256-character FIFO that stores data waiting to be sent to the IrDA device. Character data is loaded into this register by performing a write to bits 7–0 of the *Data* register. Writing into this register has no effect on received data. The amount of space *WSPACE* currently available in the transmit FIFO is provided in bits 23-16 of the *Control* register, as indicated in Figure 21. If the transmit FIFO is full, then any additional characters written to the *Data* register will be lost.

The *RE* and *WE* bits in the *Control* register are used to enable Nios V processor interrupts associated with the receive and transmit FIFOs. When enabled, interrupts are generated when *RAVAIL* for the receive FIFO, or *WSPACE* for

the transmit FIFO, exceeds 31. Pending interrupts are indicated in the *Control* register's *RI* and *WI* bits, and can be cleared by writing or reading data to/from the UART.

4.7 Analog-to-Digital Conversion Port

The Analog-to-Digital Conversion (ADC) Port provides access to the eight-channel, 12-bit analog-to-digital converter on the DE1-SoC board. As illustrated in Figure 22, the ADC port comprises eight 12-bit registers starting at the base address 0xFF204000. The first two registers have dual purposes, acting as both data and control registers. By default, the ADC port updates the A-to-D conversion results for all ports only when instructed to do so. Writing to the control register at address 0xFF204000 causes this update to occur. Reading from the register at address 0xFF204000 provides the conversion data for channel 0. Reading from the other seven registers provides the conversion data for the corresponding channels. It is also possible to have the ADC port continually request A-to-D conversion data for all channels. This is done by writing the value 1 to the control register at address 0xFF204004. The *R* bit of each channel register in Figure 22 is used in Auto-update mode. *R* is set to 1 when its corresponding channel is refreshed and set to 0 when the channel is read.

Figure 22. ADC port registers.

Figure 23 shows the connector on the DE1-SoC board that is used with the ADC port. Analog signals in the range of 0 V to the V_{CC5} power-supply voltage can be connected to the pins for channels 0 to 7.

Gnd	Ch_7
Ch_6	Ch_5
Ch_4	Ch_3
Ch_2	Ch_1
Ch_0	V_{cc5}
JP	15

Figure 23. ADC connector.

4.8 Floating-point Hardware

The Nios V/g processor in the includes hardware support for floating-point addition, subtraction, multiplication, and division. To use this support in a C program, variables must be declared with the type *float*. A simple example of such code is given in Listing 10. When this code is compiled, it may be necessary to pass special argument to the C compiler to instruct it to use the floating-point hardware support.

5 Modifying the DE1-SoC Computer with Nios V

It is possible to modify the *DE1-SoC Computer with Nios V* by using Altera's Quartus[®] Prime software and Platform Designer tool. Instructions for using this software are provided as part of the Computer Organization and System Design tutorials on the FPGAcademy.org website. To modify the system it is first necessary to make an editable copy of the *DE1-SoC Computer with Nios V*. The files for this system are installed as part of the Monitor Program installation. Locate these files, copy them to a working directory, and then use the Quartus Prime and Platform Designer software to make any desired changes.

Table 4 lists the names of the Platform Designer IP cores that are used in this system. When the *DE1-SoC Computer with Nios V* design files are opened in the Quartus Prime software, these cores can be examined using the Platform Designer System Integration tool. Each core has a number of settings that are selectable in the Platform Designer System Integration tool, and includes a datasheet that provides detailed documentation.

The steps needed to modify the system are:

- 1. Make of copy of the design source files for the DE1-SoC Computer with Nios V from the its GitHub repository.
- 2. Open the top-level project file (*.qpf) in the Quartus Prime software
- 3. Open the Platform Designer System Integration tool in the Quartus Prime software, and modify the system as desired
- 4. Generate the modified system by using the Platform Designer System Integration tool
- 5. It may be necessary to modify the Verilog code in the top-level module of the project, if any I/O peripherals have been added or removed from the system
- 6. Compile the project in the Quartus Prime software
- 7. Download the modified system into the DE1-SoC board

Note: to compile and use a new version of the *DE1-SoC Computer with Nios V* it may be necessary to request a license from Altera that allows you to create circuit that includes the Nios V processor.

I/O Peripheral	Qsys Core
SDRAM	SDRAM Controller
On-chip memory character buffer	Character Buffer for VGA Display
Red LED parallel port	Parallel Port
7-segment displays parallel port	Parallel Port
Expansion parallel ports	Parallel Port
Slider switch parallel port	Parallel Port
Pushbutton parallel port	Parallel Port
PS/2 port	PS2 Controller
JTAG port	JTAG UART
Serial port	RS232 UART
IrDA port	IrDA UART
Interval timer	Interval timer
System ID	System ID Peripheral
Audio/video configuration port	Audio and Video Config
Audio port	Audio
Video port	Pixel Buffer DMA Controller
Video In port	DMA Controller

Table 4. Platform Designer cores used in the DE1-SoC Computer with Nios V.

6 Making the System the Default Configuration

The *DE1-SoC Computer with Nios V* can be loaded into the nonvolatile FPGA configuration memory on the DE1-SoC board, so that it becomes the default system whenever the board is powered on. Instructions for configuring the DE1-SoC board in this manner can be found in the tutorial *Introduction to the Quartus Prime Software*, which is available as part of the Digital Logic Hardware Design tutorials in the FPGAcademy.org website.

7 Memory Layout

Table 5 summarizes the memory map used in the DE1-SoC Computer.

Base Address	End Address	I/O Peripheral
0x00000000	0x03FFFFFF	SDRAM
0x08000000	0x0803FFFF	FPGA On-chip Memory
0x09000000	0x09001FFF	FPGA On-chip Memory Character Buffer
0x40000000	0x7FFFFFFF	DDR3 Memory
0xFF200000	0xFF20000F	Red LEDs
0xFF200020	0xFF20002F	7-segment HEX3-HEX0 Displays
0xFF200030	0xFF20003F	7-segment HEX5-HEX4 Displays
0xFF200040	0xFF20004F	Slider Switches
0xFF200050	0xFF20005F	Pushbutton KEYs
0xFF200060	0xFF20006F	JP1 Expansion
0xFF200070	0xFF20007F	JP2 Expansion
0xFF200100	0xFF200107	PS/2
0xFF200108	0xFF20010F	PS/2 Dual
0xFF201000	0xFF201007	JTAG UART
0xFF201020	0xFF201027	Infrared (IrDA)
0xFF202000	0xFF20201F	Interval Timer
0xFF202020	0xFF20202F	Second Interval Timer
0xFF202100	0xFF202114	Nios V Machine Timer and Software Interrupts Registers
0xFF203000	0xFF20301F	Audio/video Configuration
0xFF203020	0xFF20302F	Pixel Buffer Control
0xFF203030	0xFF203037	Character Buffer Control
0xFF203040	0xFF20304F	Audio
0xFF203060	0xFF203070	Video-in
0xFF204000	0xFF20401F	ADC
0xFFC04000	0xFFC040FC	HPS I2C0

Table 5. Memory layout used in the DE1-SoC Computer.

8 Appendix

This section contains all of the source code files mentioned in the document.

8.1 Parallel Ports

```
.include "address_map_niosv.s"
* This program demonstrates use of parallel ports
 *
 * It performs the following:
  1. displays a rotating pattern on the LEDs
  2. if any KEY is pressed, the SW switches are used as the rotating pattern
.global _start
_start:
              s0, SW_BASE
                               # SW slider switch base address
       la
             s1, LED_BASE
                               # LED base address
       la
              s2, KEY BASE
                               # pushbutton KEY base address
       la
       la
             t1, LED_bits
       lw
              t0, (t1)
                               # load pattern for LED lights
DO_DISPLAY:
             t1, (s0)
                               # load slider switches
       lw
              t2, (s2)
       lw
                               # load pushbuttons
             t2, NO_BUTTON
       beqz
                               # use SW switch values as LED pattern
              t0, t1
      mv
WAIT:
      lw
              t3, (s2)
                               # load pushbuttons
              t3, WAIT
      bnez
                               # wait for button release
NO_BUTTON:
             t0, (s1)
                               # write to the LEDs
       SW
             t1, t0, 10
                               # perform some operations to rotate
       srli
              t0, t0, 1
                               # the 10-bit pattern
       slli
             t0, t0, t1
                               # completes the "rotate" operation
       or
             t2, 1500000
                               # delay counter
       li
DELAY:
       addi
             t2, t2, -1
              t2, DELAY
       bnez
              DO DISPLAY
       i
LED_bits:
          0x000030F
                            # 10-bit pattern
.word
```



```
#include "address_map_niosv.h"
/* This program demonstrates use of parallel ports in the Computer System
 * It performs the following:
 * 1. displays a rotating pattern on the LEDs
 * 2. if a KEY is pressed, uses the SW switches as the pattern
*/
int main(void) {
    /* Declare volatile pointers to I/O registers (volatile means that IO load
     * and store instructions will be used to access these pointer locations,
     * instead of regular memory loads and stores)
    */
                               = (int *)LED_BASE; // LED address
    volatile int * LED_ptr
    volatile int * SW_switch_ptr = (int *) SW_BASE; // SW slider switch address
                               = (int *)KEY_BASE; // pushbutton KEY address
    volatile int * KEY_ptr
    int LED_bits = 0x0F0F0F0F; // pattern for LED lights
    int SW_value, KEY_value;
    volatile int
        delay_count; // volatile so the C compiler doesn't remove the loop
    while (1) {
        SW_value = *(SW_switch_ptr); // read the SW slider (DIP) switch values
        KEY_value = *(KEY_ptr); // read the pushbutton KEY values
        if (KEY_value != 0) // check if any KEY was pressed
        {
            /* set pattern using SW values */
            LED_bits = SW_value | (SW_value << 8) | (SW_value << 16) |
                       (SW_value << 24);
            while (*KEY_ptr)
                ; // wait for pushbutton KEY release
        }
        *(LED_ptr) = LED_bits; // light up the LEDs
        /* rotate the pattern shown on the LEDs */
        if (LED_bits & 0x8000000)
            LED bits = (LED bits << 1) | 1;
        else
            LED_bits = LED_bits << 1;</pre>
        for (delay_count = 350000; delay_count != 0; --delay_count)
            ; // delay loop
    }
}
```

Listing 2. An example of C code that uses parallel ports.

8.2 JTAG* UART

```
.include
         "address_map_niosVm.s"
* This program demonstrates use of the JTAG UART port
*
* It performs the following:
* 1. sends a text string to the JTAG UART
* 2. reads character data from the JTAG UART
 * 3. echos the character data back to the JTAG UART
.global _start
_start:
      la
            s0, JTAG_UART_BASE # JTAG UART base address
/* print a text string */
      la
           s1, TEXT_STRING
LOOP:
      lb
            a0, 0(s1)
          a0, GET_JTAG
                            # string is null-terminated
      beqz
      jal
            PUT JTAG
            s1, s1, 1
      addi
            LOOP
      i.
/* read and echo characters */
GET_JTAG:
            t0, 0(s0)
                            # read the JTAG UART data register
      lw
      li
            t1, 0x8000
            t1, t1, t0
                            # check if there is new data
      and
      beqz
            t1, GET_JTAG
                            # if no data, wait
      andi
            a0, t0, 0x00ff
                            # the data is in the least significant byte
            PUT_JTAG
                            # echo character
      jal
      i
            GET_JTAG
```

Listing 3. An example of assembly language code that uses the JTAG UART (Part *a*).

```
* Subroutine to send a character to the JTAG UART
     a0 = character to send
*
     s0 = JTAG UART base address
*
.global PUT_JTAG
PUT_JTAG:
/* save any modified registers */
                       */
# read the JTAG UART control register
# t1 = 0xffff0000
# check for write space
# if no space, ignore the character
# send the character
         t0, 4(s0)
     lw
          t1, Oxffff0
     lui
     and
          t0, t0, t1
     beqz t0, END_PUT
           a0, 0(s0)
     SW
END_PUT:
     ret
TEXT_STRING:
      .asciz "\nJTAG UART example code\n> "
```

Listing 3. An example of assembly language code that uses the JTAG UART (Part *b*).

```
#include "JTAG UART.h"
#include "address_map_nios2.h"
* Subroutine to send a character to the JTAG UART
void put_jtag(volatile int * JTAG_UART_ptr, char c)
{
  int control;
  control = *(JTAG_UART_ptr + 1); // read the JTAG_UART control register
  if (control & 0xFFFF0000)
                     // if space, echo character, else ignore
     *(JTAG_UART_ptr) = c;
}
* Subroutine to read a character from the JTAG UART
* Returns \0 if no character, otherwise returns the character
char get_jtag(volatile int * JTAG_UART_ptr)
{
  int data;
  data = *(JTAG_UART_ptr); // read the JTAG_UART data register
  if (data & 0x00008000) // check RVALID to see if there is new data
     return ((char)data & 0xFF);
  else
     return ('\0');
}
```

Listing 4. An example of C code that uses the JTAG UART (Part a).

```
#include "JTAG UART.h"
#include "address_map_nios2.h"
* This program demonstrates use of the JTAG UART port
 * It performs the following:
 * 1. sends a text string to the JTAG UART
 * 2. reads character data from the JTAG UART
  3. echos the character data back to the JTAG UART
 int main(void)
{
   /* Declare volatile pointers to I/O registers (volatile means that IO load
     and store instructions will be used to access these pointer locations,
     instead of regular memory loads and stores) */
   volatile int * JTAG_UART_ptr = (int *)JTAG_UART_BASE; // JTAG UART address
   char text_string[] = "\nJTAG UART example code\n> \0";
   char *str, c;
   /* print a text string */
   for (str = text_string; *str != 0; ++str)
      put_jtag(JTAG_UART_ptr, *str);
   /* read and echo characters */
   while (1)
   {
      c = get_jtag(JTAG_UART_ptr);
      if (c != '\0')
         put_jtag(JTAG_UART_ptr, c);
   }
```

Listing 4. An example of C code that uses the JTAG UART (Part *b*).

}

8.3 Interrupts

```
"address map niosv.s"
1
  .include
  2
   * This program demonstrates use of interrupts with assembly code. It first
3
4
   * sets up interrupts from three devices: the Nios V machine timer, an FPGA
5
   * interval timer, and the pushbutton KEY port. Next, the program makes a
6
   * software interrupt occur. Finally, the program loops while responding to
7
    * interrupts from the timers and the pushbutton KEY port.
8
9
    * The interrupt service routine for the software interrupt turns on most
10
   * of the red lights in the LEDR port.
11
12
   * The interrupt service routine for the Nios V machine timer causes the
   * main program to display a binary counter on the LEDR red lights.
13
14
15
   * The interrupt service routine for the interval timer causes the main
16
   * program to display a decimal counter on HEX0. The counter either
    * increases or decreases, in the range 0 to 9. When a KEY is pressed, the
17
    * direction of counting on HEXO is reversed.
18
19
  20
  .equ clock_rate, 10000000
21
  .equ quarter_clock, clock_rate / 4
22
23 .global _start
24 _start:
            li
                     sp, SDRAM_END-3 # bottom of memory
25
                                    # initialize machine timer
              jal
                    set_mtimer
26
              jal
                     set_itimer
                                    # initialize interval timer
27
              jal
                                    # initialize the KEY port
                     set_KEY
28
29
              # Set handler address, enable interrupts
30
              csrci mstatus, 0x8  # disable Nios V interrupts
31
             la
                   t0, handler
32
              csrw mtvec, t0
                                   # set trap address
33
              csrr t0, mie
                                    # what ints are enabled?
34
                                    # disable all ints that were enabled
              csrc
                    mie, t0
35
             li
                    t0, 0x50088
                                   # set the enable pattern
36
              csrs
                    mie, t0
                                    # swi, itimer, KEY, mtimer
37
              csrsi mstatus, 0x8
                                    # enable Nios V interrupts
38
39
              # Make a software interrupt happen
40
              la
                     t0, MTIME_BASE # base address
41
                     t1, 1
                                     # pattern to write to msip
              li
42
                     t1, 16(t0)
                                    # write to msip (sw interrupt)
              SW
```

Listing 5. An example of assembly language code that uses interrupts (Part *a*).

43

44		la	s0,	counter	#	pointer to counter
45		la	s1,	LEDR BASE	#	pointer to red lights
46		la	s2,	digit	#	pointer to digit
47		la	s3.	HEX3 HEX0 BAS	SE	# pointer to hex display
48		li	t0,	0x3f	#	pattern for 7-segment digit 0
49		SW	t.O.	(\$3)	#	display 0 on HEX0
50		2.1	,	(22)		
51	1000:	wfi				
52		lw	t.0.	(<i>s0</i>)	#	load the counter value
53		SW	t.O.	(<i>s</i> 1)	#	write to the lights
54		lw	a0.	(s_{2})	#	load the digit value
55		ial	sea	7 code	#	get 7-segment code to display
56		SW	a0.	(s3)	#	write code to HEXO
57			1001	(<i>23</i>)		
58		J	±00]	2		
59	# Trap hand	ler				
60	handler.	addi	sn	sp -16	#	save reas that will be modified
61	nanarer.	SW	ra	12(sp)	"	save regs that will be modified
62		SW	+2	8 (sp)		
63		SW	+ 1	4(sp)		
64		SW	+ 0	(sp)		
65		5.	20,	(5))		
66		# check	for	cause of trar	2	
67		Cerr	+ 0		_ #	read meause register
68		11	+ 1		" #	TRO 3
69		hne	+ 0	t1 next	#	software interrunt?
70		ial	SWIT	TSR	"	Soleware incertape.
71		i	trai	n		
72	next.	J	+ 1		#	TRO 7
73	iiche.	hne	τη + Ο	t1 nnext	#	machine timer?
74		ial	mt in	mer ISR	"	
75		i	trai	n end		
76	nnevt.	J 1 i	+ 1		#	TRO 16
70	inicat.	hne	+ 0	+1 chk KEV		
78		ial	i+ i	mor ISR		
79		-jur	trai	n end		
80	chk KEY.	J 1 i	+ 1		#	TRO 18
81	stav.	hne	+ 0	t1 stav	" #	unexpected!
82	stay.	ial	KEV	TSR	"	unexpected.
83		Jur	тс <u>т</u> -	_101(
84	trap end.	lw	+ 0	(sp)	#	restore reas
85	crap_ena.	- w	+ 1	(3p)	п	TEDEOTE TEGS
86		- w	+2	8 (sp)		
87		- w	r2,	12(sp)		
88		addi		$r_{2}(S_{P})$		
89		mret	3P1	5, 10		
90		MICC				
20						

Listing 5. An example of assembly language code that uses interrupts (Part *b*).

```
91 # Handle software interrupt
92 SWI_ISR: la t0, counter
                                       # pointer to counter
93
               1 i
                      t1, 0b1111111100
94
               SW
                      t1, (t0)
                                       # write to counter
95
               la
                      t0, MTIME_BASE
                                       # base address
96
                       zero, 16(t0) # clear software interrupt in msip
               SW
97
               ret
98
99 # Handle machine timer interrupt
100 mtimer_ISR: la t0, MTIME_BASE
101
                      t1, 8(t0)
               lw
                                       # read mtimecmp low
102
               li
                      t2, quarter clock
103
               add
                      t2, t2, t1 # add to mtimecmp
                      t2, 8(t0)
104
               SW
                                     # write to mtimecmp low
105
                      t2, t2, t1
                                     # check for carry-out
               sltu
106
               lw
                      t1, 12(t0)
                                     # read mtimecmp high
107
                                     # increment (t2 = carry-out)
               add
                      t1, t1, t2
108
                      t1, 12(t0)
                                      # write to mtimecmp high
               SW
109
110
                                     # pointer to counter
               la
                      t0, counter
111
               lw
                       t1, (t0)
                                      # read counter value
112
                      t1, t1, 1
                                      # increment the counter
               addi
113
               SW
                       t1, (t0)
                                      # store counter to memory
114
               ret
115
116 # Handle interval timer interrupt
117 itimer_ISR: la t0, TIMER_BASE
118
              sh
                      zero, (t0)
                                       # clear interrupt
119
                      t0, digit
               la
               lw
120
                      t1, (t0)
121
122
               la
                      t2, KEY_dir
123
               lw
                      t2, (t2)
124
                      t1, t1, t2
               add
125
                      t2, 9
               li
126
               bgt
                      t1, t2, itimer_end
127
               bltz
                     t1, itimer_end
128
               SW
                      t1, (t0)
                                       # store counter to memory
129 itimer_end: ret
130
```



```
131 # Handle KEY port interrupt
132 KEY_ISR:
             la
                       t0, KEY_BASE
133
               lw
                       t1, 0xc(t0)
                                       # read edgecapture register
134
                       t1, 0xc(t0)
               SW
                                        # write to edgecapture
135
               la
                       t0, KEY_dir
136
               lw
                       t1, (t0)
                                        # get current direction
137
                       t1, t1
                                        # reverse
               neg
138
               SW
                       t1, (t0)
                                        # set current direction
139
               ret
140
141 # Initialize Nios V machine timer
142 set mtimer: la
                       t0. MTIME BASE
                                        # set address
143
               # read the current time
144 tloop:
               lw
                       t2, 4(t0)
                                 # read mtime high
145
                       t1, 0(t0)
                                       # read mtime low
               lw
146
               lw
                       t3, 4(t0)
                                       # read high again
147
                       t3, t2, tloop # check for overflow from low to high
               bne
148
               # current time is t2:t1
149
               li
                       t3, quarter_clock
150
               add
                       t3, t3, t1  # add to current time
151
               SW
                       t3, 8(t0)
                                       # write to mtimecmp low
152
                       t3, t3, t1
                                       # check for carry-out
               sltu
                                       # increment (t3 = carry-out)
153
               add
                       t2, t2, t3
154
                       t2, 12(t0)
                                       # write to mtimecmp high
               SW
155
               ret
156
157
   # Initialize FPGA interval timer
158 set_itimer: la t0, TIMER_BASE
                                        # set address
159
                       zero, 4(t0) # stop the timer
               sh
160
                       zero, (t0)
                                       # clear the interrupt bit
               sh
161
               li
                       t1, clock_rate
                                      # timeout value
162
               sh
                       t1, 8(t0)
                                       # write to timer low half-word
163
               srli
                       t1, t1, 16
164
                       t1, 0xc(t0)
                                       # write to timer high half-word
               sh
165
               li
                       t1, 0b0111
                                        # START = 1, CONT = 1, ITO = 1
166
               sh
                       t1, 4(t0)
                                       # reset lower word of mtime
167
               ret
168
169 # Enable interrupts in the KEY port
170 set_KEY:
             la t0, KEY_BASE
                                        # set address
171
                       t1, 0xf
               li
172
               SW
                       t1, 0xc(t0)
                                        # clear all EdgeCapture bits
173
               li
                       t1, 0xf
                                        # bit pattern for all four KEYs
174
                       t1, 8(t0)
                                       # write to interrupt mask register
               SW
175
               ret
176
```

Listing 5. An example of assembly language code that uses interrupts (Part *d*).

```
177 # Convert digit in a0 to seven-segment code. Return code in a0
178 seg7_code: la t0, bit_codes # starting address of the bit codes
         add
lb
                              t0, t0, a0# index into the bit codesa0, (t0)# read the bit code for our digit
179
180
181
                    ret
182

      183
      counter:
      .word
      0

      184
      digit:
      .word
      0

      185
      KEY_dir:
      .word
      1

                                                     # binary counter to be displayed
                                                     # decimal digit to be displayed
                                                    # digit counter direction
186 # 7-segment codes for digits 0, 1, ..., 9
187 bit_codes: .byte 0x3f, 0x06, 0x5b, 0x4f, 0x66
188
                     .byte 0x6d, 0x7d, 0x07, 0x7f, 0x67
```

Listing 5. An example of assembly language code that uses interrupts (Part *e*).

```
1 #include
              "address_map_niosv.h"
2
3 #define clock_rate 10000000
4 #define quarter_clock clock_rate / 4
5
6 static void handler(void) __attribute__ ((interrupt ("machine")));
7 void set_mtimer(void);
8
  void set_itimer(void);
9 void set_KEY(void);
10 void SWI_ISR(void);
11 void mtimer_ISR(void);
12 void itimer ISR(void);
13 void KEY_ISR(void);
14
15 /* Global variables are written by interrupt service routines; we declare
16 * as volatile to avoid the compiler caching their values in registers */
17 volatile int counter = 0; // binary counter to be displayed
                              // decimal digit to be displayed
18 volatile int digit = 0;
19 volatile int KEY_dir = 1; // digit counter direction
20 // 7-segment codes for digits 0, 1, ..., 9
21 char bit_codes[] = {0x3f, 0x06, 0x5b, 0x4f, 0x66,
22
       0x6d, 0x7d, 0x07, 0x7f, 0x67};
23
24
  25
   * This program demonstrates use of interrupts with assembly code. It first
26
   * sets up interrupts from three devices: the Nios V machine timer, an FPGA
27
    * interval timer, and the pushbutton KEY port. Next, the program makes a
28
    * software interrupt occur. Finally, the program loops while responding to
29
    * interrupts from the timers and the pushbutton KEY port.
30
    * The interrupt service routine for the software interrupt turns on most
31
32
   * of the red lights in the LEDR port.
33
34
    * The interrupt service routine for the Nios V machine timer causes the
35
    * main program to display a binary counter on the LEDR red lights.
36
37
    * The interrupt service routine for the interval timer causes the main
38
    * program to display a decimal counter on HEX0. The counter either
39
   * increases or decreases, in the range 0 to 9. When a KEY is pressed, the
40
   * direction of counting on HEX0 is reversed.
  41
42
   int main(void) {
43
      /* Declare volatile pointers to I/O registers (volatile means that the
44
        * accesses will always go to the memory (I/O) address */
45
      volatile int *mtime_ptr = (int *) MTIME_BASE;
46
      volatile int *LEDR_ptr = (int *) LEDR_BASE;
47
      volatile int *HEX3_HEX0_ptr = (int *) HEX3_HEX0_BASE;
48
```

Listing 6. An example of C code that uses interrupts (Part *a*).

```
49
       set_mtimer();
50
       set_itimer();
51
       set_KEY();
52
53
      int mstatus_value, mtvec_value, mie_value;
54
      mstatus_value = 0b1000; // interrupt bit mask
55
       // disable interrupts
56
       ___asm__ volatile ("csrc mstatus, %0" :: "r"(mstatus_value));
57
      mtvec_value = (int) &handler; // set trap address
58
       __asm__ volatile ("csrw mtvec, %0" :: "r"(mtvec_value));
      // disable all interrupts that are currently enabled
59
      __asm__ volatile ("csrr %0, mie" : "=r"(mie_value));
60
61
       __asm__ volatile ("csrc mie, %0" :: "r"(mie_value));
62
      mie_value = 0x50088; // KEY, itimer, mtimer, SW interrupts
63
       // set interrupt enables
64
      __asm__ volatile ("csrs mie, %0" :: "r"(mie_value));
65
      // enable Nios V interrupts
66
       __asm__ volatile ("csrs mstatus, %0" :: "r"(mstatus_value));
67
68
       *(mtime_ptr + 4) = 1; // cause a software interrupt
69
70
       *HEX3_HEX0_ptr = 0x3f; // show 0 on HEX0
71
72
      while (1) {
73
          *LEDR_ptr = counter;
74
          *HEX3_HEX0_ptr = bit_codes[digit]; // display in decimal
75
       }
76 }
77
79
    * Trap handler: determine what caused the interrupt and calls the
80
   * appropriate subroutine.
81
    82 void handler (void) {
83
      int mcause_value;
84
       ___asm__ volatile ("csrr %0, mcause" : "=r"(mcause_value));
85
      if (mcause_value == 0x80000003) // software interrupt
86
          SWI_ISR();
87
      else if (mcause_value == 0x80000007) // machine timer
88
          mtimer_ISR();
89
      else if (mcause_value == 0x80000010) // interval timer
90
          itimer_ISR();
91
      else if (mcause_value == 0x80000012) // KEY port
92
          KEY ISR();
93
      // else, ignore the trap
94 }
95
```

Listing 6. An example of C code that uses interrupts (Part *b*).

```
96 // Software interrupt service routine
97 void SWI_ISR(void) {
98
        volatile int *mtime_ptr = (int *) MTIME_BASE;
99
        counter = 0b1111111100; // set global variable
100
        * (mtime_ptr + 4) = 0; // clear interrupt
101 }
102
103 // Nios V machine timer interrupt service routine
104 typedef long long int64;
105
106 void mtimer_ISR(void) {
107
        volatile unsigned int *mtime_ptr = (unsigned int *) MTIME_BASE;
108
        int64 mtimecmp64;
109
110
        mtimecmp64 = *(mtime_ptr + 3); // read high word of 64-bit
            register
111
        mtimecmp64 = (mtimecmp64 << 32) | * (mtime ptr + 2);
                                                             // read
            low word
112
        mtimecmp64 = mtimecmp64 + (int64) guarter_clock;
                                                                // adjust
            timeout
113
        * (mtime_ptr + 2) = (unsigned int) mtimecmp64;
                                                                // store
           low word
114
        *(mtime_ptr + 3) = (unsigned int) (mtimecmp64 >> 32); // store
           high word
115
        counter = counter + 1;
116 }
117
118 // FPGA interval timer interrupt service routine
119 void itimer ISR(void) {
120
        int new_digit;
        volatile int * timer_ptr = (int *) TIMER_BASE;
121
122
        *timer_ptr = 0; // clear the interrupt
123
        new_digit = digit + KEY_dir; // inc/dec the digit
124
        if (new digit < 10 && new digit > -1)
125
            digit = new_digit; // decimal (0 to 9)
126 }
127
128 // KEY port interrupt service routine
129 void KEY_ISR(void) {
130
        int pressed;
131
        volatile int *KEY_ptr = (int *) KEY_BASE;
132
        pressed = *(KEY_ptr + 3); // read EdgeCapture
133
        *(KEY_ptr + 3) = pressed; // clear EdgeCapture register
134
        KEY dir = -KEY dir;
                              // reverse counting direction
135 }
136
```

Listing 6. An example of C code that uses interrupts (Part *c*).

```
137 // Configure the Nios V machine timer
138 void set_mtimer(void) {
139
        volatile int *mtime_ptr = (int *) MTIME_BASE;
140
        unsigned int mtime_h, mtime_l, carry, mtimecmp_l;
141
        do {
142
             mtime_h = * (mtime_ptr + 1);
                                                   // read mtime high word
143
             mtime_l = * (mtime_ptr);
                                                    // read mtime low word
144
        } while (*(mtime_ptr + 1) != mtime_h);
145
        mtimecmp_l = mtime_l + quarter_clock; // add to current time
146
        carry = mtimecmp_l < mtime_l ? 1 : 0; // check for carry-out</pre>
        *(mtime_ptr + 2) = mtimecmp_l; // set mtimecmp low word
*(mtime_ptr + 3) = mtime_h + carry; // set mtimecmp high word
147
148
149 }
150
151
    // Configure the FPGA interval timer
152 void set_itimer(void) {
153
        volatile int *timer ptr = (int *) TIMER BASE;
154
        // set the interval timer period
155
        int load_val = clock_rate;
156
        *(timer_ptr + 0x2) = (load_val & 0xFFFF);
157
        *(timer_ptr + 0x3) = (load_val >> 16) & 0xFFFF;
158
159
        // start interval timer, enable its interrupts
160
        *(timer_ptr + 1) = 0x7; // STOP = 1, START = 1, CONT = 1, ITO = 1
161 }
162
163
    // Configure the KEY port
164 void set_KEY (void) {
165
        volatile int *KEY ptr = (int *) KEY BASE;
        *(KEY_ptr + 3) = 0xF; // clear EdgeCapture register
166
167
        *(KEY_ptr + 2) = 0xF; // enable interrupts for all KEYs
168 }
```

Listing 6. An example of C code that uses interrupts (Part *d*).

8.4 Audio

```
#include "address_map_niosv.h"
/* globals */
#define BUF_SIZE 80000 // about 10 seconds of buffer (@ 8K samples/sec)
#define BUF_THRESHOLD 96 // 75% of 128 word buffer
/* function prototypes */
void check_KEYs(int *, int *, int *);
* This program performs the following:
 * 1. records audio for 10 seconds when KEY[0] is pressed. LEDR[0] is lit
      while recording.
   2. plays the recorded audio when KEY[1] is pressed. LEDR[1] is lit while
     playing.
 int main(void) {
   /* Declare volatile pointers to I/O registers (volatile means that IO load
      and store instructions will be used to access these pointer locations,
      instead of regular memory loads and stores) */
   volatile int * red_LED_ptr = (int *)LED_BASE;
   volatile int * audio_ptr = (int *)AUDIO_BASE;
   /* used for audio record/playback */
   int fifospace;
   int record = 0, play = 0, buffer_index = 0;
   int left buffer[BUF SIZE];
   int right_buffer[BUF_SIZE];
   /* read and echo audio data */
   record = 0;
   play = 0;
   while (1) {
       check_KEYs(&record, &play, &buffer_index);
       if (record) {
           *(red_LED_ptr) = 0x1; // turn on LEDR[0]
          fifospace =
              *(audio_ptr + 1); // read the audio port fifospace register
          if ((fifospace & 0x00000FF) > BUF THRESHOLD) // check RARC
           {
              // store data until the the audio-in FIFO is empty or the buffer
              // is full
              while ((fifospace & 0x00000FF) && (buffer index < BUF SIZE)) {</pre>
                  left_buffer[buffer_index] = *(audio_ptr + 2);
                  right_buffer[buffer_index] = *(audio_ptr + 3);
                  ++buffer_index;
                  if (buffer_index == BUF_SIZE) {
```

```
// done recording
                     record
                                 = 0;
                     *(red_LED_ptr) = 0x0; // turn off LEDR
                 }
                 fifospace = *(audio_ptr +
                              1); // read the audio port fifospace register
              }
          }
       } else if (play) {
          *(red_LED_ptr) = 0x2; // turn on LEDR_1
          fifospace =
              *(audio_ptr + 1); // read the audio port fifospace register
          if ((fifospace & 0x00FF0000) > BUF_THRESHOLD) // check WSRC
          {
              // output data until the buffer is empty or the audio-out FIFO
              // is full
              while ((fifospace & 0x00FF0000) && (buffer_index < BUF_SIZE)) {</pre>
                 *(audio_ptr + 2) = left_buffer[buffer_index];
                 *(audio_ptr + 3) = right_buffer[buffer_index];
                 ++buffer_index;
                 if (buffer index == BUF SIZE) {
                     // done playback
                     play
                              = 0;
                     *(red_LED_ptr) = 0x0; // turn off LEDR
                 }
                 fifospace = *(audio_ptr +
                              1); // read the audio port fifospace register
              }
          }
      }
   }
* Subroutine to read KEYs
void check_KEYs(int * KEY0, int * KEY1, int * counter) {
   volatile int * KEY_ptr = (int *)KEY_BASE;
   volatile int * audio_ptr = (int *)AUDIO_BASE;
   int
                KEY_value;
   KEY_value = *(KEY_ptr); // read the pushbutton KEY values
   while (*KEY_ptr)
       ; // wait for pushbutton KEY release
   if (KEY_value == 0x1) // check KEY0
   {
       // reset counter to start recording
       *counter = 0;
       // clear audio-in FIFO
```

}

```
*(audio_ptr) = 0x4;
*(audio_ptr) = 0x0;
*KEY0 = 1;
} else if (KEY_value == 0x2) // check KEY1
{
    // reset counter to start playback
*counter = 0;
    // clear audio-out FIF0
*(audio_ptr) = 0x8;
*(audio_ptr) = 0x0;
*KEY1 = 1;
}
```

Listing 7. An example of code that uses the audio port.

}

8.5 Video Out

```
#include "address_map_niosv.h"
/* function prototypes */
void video text(int, int, char *);
void video_box(int, int, int, int, short);
int resample_rgb(int, int);
int get_data_bits(int);
#define STANDARD_X 320
#define STANDARD Y 240
#define INTEL BLUE 0x0071C5
/* global variables */
int screen_x;
int screen_y;
int res_offset;
int col_offset;
* This program demonstrates use of the video in the computer system.
 * Draws a blue box on the video display, and places a text string inside the
 * box
 int main(void) {
   volatile int * video_resolution = (int *)(PIXEL_BUF_CTRL_BASE + 0x8);
                                = *video resolution & 0xFFFF;
   screen x
                                = (*video_resolution >> 16) & 0xFFFF;
   screen_y
   // The following two lines are supported in hardware, but not in CPUlator
   volatile int * rgb_status = (int *) (RGB_RESAMPLER_BASE);
   int db = get_data_bits(*rgb_status & 0x3F);
   // int db = 16; // replace above two lines with this one for CPUlator
   /* check if resolution is smaller than the standard 320 x 240 */
   res_offset = (screen_x == 160) ? 1 : 0;
   /* check if number of data bits is less than the standard 16-bits */
   col_offset = (db == 8) ? 1 : 0;
   /* create a message to be displayed on the video and LCD displays */
   char text top row[40] = "Intel FPGA\0";
   char text_bottom_row[40] = "Computer Systems\0";
   /* update color */
   short background_color = resample_rgb(db, INTEL_BLUE);
   video_text(35, 29, text_top_row);
   video_text(32, 30, text_bottom_row);
   video_box(0, 0, STANDARD_X, STANDARD_Y, 0); // clear the screen
   video_box(31 * 4, 28 * 4, 49 * 4 - 1, 32 * 4 - 1, background_color);
```

FPGAcademy.org Aug 2024 }

```
* Subroutine to send a string of text to the video monitor
void video_text(int x, int y, char * text_ptr) {
   int
               offset;
   volatile char * character_buffer =
      (char *) FPGA_CHAR_BASE; // video character buffer
   /* assume that the text string fits on one line */
   offset = (y \ll 7) + x;
   while (*(text_ptr)) {
      *(character_buffer + offset) =
         *(text_ptr); // write to the character buffer
      ++text_ptr;
      ++offset;
   }
}
* Draw a filled rectangle on the video monitor
* Takes in points assuming 320x240 resolution and adjusts based on differences
* in resolution and color bits.
 void video_box(int x1, int y1, int x2, int y2, short pixel_color) {
   int pixel_buf_ptr = *(int *)PIXEL_BUF_CTRL_BASE;
   int pixel_ptr, row, col;
   int x_factor = 0x1 << (res_offset + col_offset);</pre>
   int y_factor = 0x1 << (res_offset);</pre>
            = x1 / x_factor;
   x1
            = x^2 / x_factor;
   x2
            = y1 / y_factor;
   v1
            = y2 / y_factor;
  y2
   /* assume that the box coordinates are valid */
   for (row = y1; row <= y2; row++)</pre>
      for (col = x1; col <= x2; ++col) {</pre>
         pixel ptr = pixel buf ptr +
                  (row << (10 - res_offset - col_offset)) + (col << 1);</pre>
         *(short *)pixel_ptr = pixel_color; // set pixel color
      }
}
* Resamples 24-bit color to 16-bit or 8-bit color
int resample_rgb(int num_bits, int color) {
   if (num_bits == 8) {
      color = (((color >> 16) & 0x00000E0) | ((color >> 11) & 0x000001C) |
             ((color >> 6) & 0x0000003));
```

```
color = (color << 8) | color;</pre>
   } else if (num_bits == 16) {
      color = (((color >> 8) & 0x0000F800) | ((color >> 5) & 0x000007E0) |
             ((color >> 3) & 0x000001F));
   }
   return color;
}
* Finds the number of data bits from the mode
 int get_data_bits(int mode) {
   switch (mode) {
   case 0x0:
      return 1;
   case 0x7:
      return 8;
   case 0x11:
      return 8;
   case 0x12:
      return 9;
   case 0x14:
      return 16;
   case 0x17:
      return 24;
   case 0x19:
      return 30;
   case 0x31:
      return 8;
   case 0x32:
      return 12;
   case 0x33:
      return 16;
   case 0x37:
      return 32;
   case 0x39:
      return 40;
   }
   return -1; // error
}
```

Listing 8. An example of code that uses the video-out port.

8.6 PS/2

```
#include "address_map_niosv.h"
/* function prototypes */
void HEX_PS2(char, char, char);
* This program demonstrates use of the PS/2 port by displaying the last three
 * bytes of data received from the PS/2 port on the HEX displays.
 int main(void) {
   /* Declare volatile pointers to I/O registers (volatile means that IO load
     and store instructions will be used to access these pointer locations,
     instead of regular memory loads and stores) */
   volatile int * PS2_ptr = (int *)PS2_BASE;
   int PS2_data, RVALID;
   char byte1 = 0, byte2 = 0, byte3 = 0;
   // PS/2 mouse needs to be reset (must be already plugged in)
   *(PS2_ptr) = 0xFF; // reset
   while (1) {
                         // read the Data register in the PS/2 port
      PS2 data = * (PS2 ptr);
      RVALID = PS2_data & 0x8000; // extract the RVALID field
      if (RVALID) {
         /* shift the next data byte into the display */
         byte1 = byte2;
         byte2 = byte3;
         byte3 = PS2_data & 0xFF;
         HEX_PS2(byte1, byte2, byte3);
         if ((byte2 == (char) 0xAA) && (byte3 == (char) 0x00))
             // mouse inserted; initialize sending of data
             *(PS2_ptr) = 0xF4;
      }
   }
}
* Subroutine to show a string of HEX data on the HEX displays
void HEX_PS2(char b1, char b2, char b3) {
   volatile int * HEX3_HEX0_ptr = (int *)HEX3_HEX0_BASE;
   volatile int * HEX5_HEX4_ptr = (int *)HEX5_HEX4_BASE;
   /* SEVEN_SEGMENT_DECODE_TABLE gives the on/off settings for all segments in
    \star a single 7-seg display in the DE1-SoC Computer, for the hex digits 0 - F
    */
   unsigned char seven_seg_decode_table[] = {
```

```
0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07,
    0x7F, 0x67, 0x77, 0x7C, 0x39, 0x5E, 0x79, 0x71};
unsigned char hex_segs[] = {0, 0, 0, 0, 0, 0, 0};
unsigned int shift_buffer, nibble;
unsigned char code;
int
              i;
shift_buffer = (b1 << 16) | (b2 << 8) | b3;</pre>
for (i = 0; i < 6; ++i) {</pre>
    nibble = shift_buffer & 0x0000000F; // character is in rightmost nibble
    code = seven_seg_decode_table[nibble];
   hex_segs[i] = code;
    shift_buffer = shift_buffer >> 4;
}
/* drive the hex displays */
*(HEX3_HEX0_ptr) = *(int *)(hex_segs);
*(HEX5_HEX4_ptr) = *(int *)(hex_segs + 4);
```

Listing 9. An example of code that uses the PS/2 port.

}

8.7 Floating Point

```
* This program demonstrates use of floating-point numbers
 * It performs the following:
      1. reads two FP numbers from the Terminal window
      2. performs +, -, *, and / on the numbers
       3. prints the results on the Terminal window
      Note: Please enable "Echo input" in the terminal window
 #include <stdio.h>
int flush()
{
   while (getchar() != '\n')
      ;
   return 1;
}
int main(void)
{
   float x, y, add, sub, mult, div;
   while (1)
   {
      printf("Enter FP values X: ");
      while ((scanf("%f", &x) != 1) && flush())
          ; // get valid floating point value and flush the invalid input
      printf("%f\n", x); // echo the typed data to the Terminal window
      printf("Enter FP values Y: ");
      while ((scanf("%f", &y) != 1) && flush())
          ; // get valid floating point value and flush the invalid input
      printf("%f\n", y); // echo the typed data to the Terminal window
      add = x + y;
       sub = x - y;
      mult = x * y;
      div = x / y;
      printf("X + Y = f\n", add);
      printf("X - Y = f\n", sub);
      printf("X * Y = %f\n", mult);
      printf("X / Y = f\n", div);
   }
}
```

Listing 10. An example of code that uses floating-point variables.

8.8 Include Files

* This file provides address values that exist in the DE1-SoC Computer /* Memory */ DDR_BASE, 0x40000000 .equ .equ DDR_END, 0x7FFFFFFF .equ A9_ONCHIP_BASE, 0xFFFF0000 A9_ONCHIP_END, OxFFFFFFFF .equ 0x00000000 SDRAM_BASE, .equ SDRAM_END, 0x03FFFFFF .equ FPGA_PIXEL_BUF_BASE, 0x0800000 .equ .equ FPGA PIXEL BUF END, 0x0803FFFF FPGA_CHAR_BASE, 0x09000000 .equ FPGA_CHAR_END, 0x09001FFF .equ /* Cyclone V FPGA devices */ LED BASE, .equ 0xFF200000 .equ LEDR BASE, 0xFF200000 HEX3_HEX0_BASE, 0xFF200020 .equ HEX5_HEX4_BASE, 0xFF200030 .equ 0xFF200040 SW_BASE, .equ KEY_BASE, 0xFF200050 .equ JP1_BASE, 0xFF200060 .equ JP2_BASE, 0xFF200070 .equ 0xFF200100 PS2_BASE, .equ 0xFF200108 PS2_DUAL_BASE, .equ JTAG_UART_BASE, 0xFF201000 .equ IrDA_BASE, 0xFF201020 .equ TIMER BASE, 0xFF202000 .equ TIMER_2_BASE, 0xFF202020 .equ AV CONFIG BASE, 0xFF203000 .equ PIXEL_BUF_CTRL_BASE, 0xFF203020 .equ 0xFF203030 CHAR_BUF_CTRL_BASE, .equ AUDIO BASE, 0xFF203040 .equ VIDEO IN BASE, 0xFF203060 .equ EDGE_DETECT_CTRL_BASE, 0xFF203070 .equ 0xFF204000 ADC_BASE, .equ /* Nios V memory-mapped registers */

Listing 11. The *address_map_niosv.s* include file.

0xFF202100

.equ

MTIME_BASE,

#ifndef ___SYSTEM_INFO___

#define ____SYSTEM_INFO____

#define	BOARD	"DE1-SoC"	
/* Memoi	cy */		
<pre>#define</pre>	DDR_BASE	0x4000000	
<pre>#define</pre>	DDR_END	0x7FFFFFFF	
<pre>#define</pre>	SDRAM_BASE	0x0000000	
<pre>#define</pre>	SDRAM_END	0x03FFFFFF	
<pre>#define</pre>	FPGA_PIXEL_BUF_BA	SE 0x0800000	
<pre>#define</pre>	FPGA_PIXEL_BUF_EN	D 0x0803FFFF	
<pre>#define</pre>	FPGA_CHAR_BASE	0x09000000	
<pre>#define</pre>	FPGA_CHAR_END	0x09001FFF	
/* Cyclone V FPGA devices */			
<pre>#define</pre>	LED_BASE	0xFF200000	
<pre>#define</pre>	LEDR_BASE	0xFF200000	
<pre>#define</pre>	HEX3_HEX0_BASE	0xFF200020	
<pre>#define</pre>	HEX5_HEX4_BASE	0xFF200030	
11 A	ALL BAAR	0	

<pre>#define</pre>	LEDR_BASE	0xFF200000
<pre>#define</pre>	HEX3_HEX0_BASE	0xFF200020
<pre>#define</pre>	HEX5_HEX4_BASE	0xFF200030
<pre>#define</pre>	SW_BASE	0xFF200040
<pre>#define</pre>	KEY_BASE	0xFF200050
<pre>#define</pre>	JP1_BASE	0xFF200060
<pre>#define</pre>	JP2_BASE	0xFF200070
<pre>#define</pre>	PS2_BASE	0xFF200100
<pre>#define</pre>	PS2_DUAL_BASE	0xFF200108
<pre>#define</pre>	JTAG_UART_BASE	0xFF201000
<pre>#define</pre>	IrDA_BASE	0xFF201020
<pre>#define</pre>	TIMER_BASE	0xFF202000
<pre>#define</pre>	TIMER_2_BASE	0xFF202020
<pre>#define</pre>	AV_CONFIG_BASE	0xFF203000
<pre>#define</pre>	RGB_RESAMPLER_BASE	0xFF203010
<pre>#define</pre>	PIXEL_BUF_CTRL_BASE	0xFF203020
<pre>#define</pre>	CHAR_BUF_CTRL_BASE	0xFF203030
<pre>#define</pre>	AUDIO_BASE	0xFF203040
<pre>#define</pre>	VIDEO_IN_BASE	0xFF203060
<pre>#define</pre>	EDGE_DETECT_CTRL_BASE	0xFF203070
<pre>#define</pre>	ADC_BASE	0xFF204000

/* Cyclone V HPS devices */
#define MTIME_BASE 0xFF202100

#endif

Listing 12. The *address_map_niosv.h* include file.

Copyright © FPGAcademy.org. All rights reserved. FPGAcademy and the FPGAcademy logo are trademarks of FPGAcademy.org. This document is being provided on an "as-is" basis and as an accommodation and therefore all warranties, representations or guarantees of any kind (whether express, implied or statutory) including, without limitation, warranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.

**Other names and brands may be claimed as the property of others.